Sixth ATF-2 project meeting:

Study of supports for ATF-2 final doublets

Laboratories in Annecy working on Vibration Stabilization

Benoît BOLZON

Nanobeam 08, Novosibirsk

Context

Work for LAVISTA team: Study of stiff supports for ATF2 final doublets

1. Vibratory study of a STACIS honeycomb table as a base for fixing magnets

- ✓ Table fixed to 4 rigid supports at its corners
- ✓ Table fixed to the floor on its entire face

2. Vibratory study of ATF2 final doublets with their intermediary supports made at LAPP

- ✓ Vibratory study of an ATF2 sextupole with its supports
- ✓ Vibratory study of an ATF2 quadrupole with its supports

First part: Vibratory study of a STACIS honeycomb table as a base for fixing magnets ✓ Table fixed to 4 rigid supports at its corners ✓ Table fixed to the floor on its entire face

Experimental set-up

6

Same pressure on each foot thanks to a torque wrench

In order to avoid table rocking for good vibration transmission between floor and table

Evolution of resonances with weight on the table

Signal to Noise Ratios (SNR) and Coherences

Signal to Noise Ratios SNR of table and floor measurements and coherence; No masses SNR of table and floor measurements and coherence; 1188kg SNR of table and floor measurements and coherence; 594kg 10 10 10 SNR of floor measurements No masses 1188kg SNR of floor measurements 594kgSNR of floor measurements SNR of table measurements SNR of table measurements 10^4 coherence 10^2 SNR of table measurements SNR and coherence [] 10^4 10^2 10^2 **SNR and coherence [**] 10^4 10^2 10^0 10^{-2} Coherence Coherence Coherence **SNR and** 10[°] 0.033 10⁻¹ 0.2 0.033 10⁻¹ 0.2 7010² 0.033 10⁻¹ 0.2 10[°] 3 10¹ 3 10¹ 70 10² 10⁰ 3 10¹ 7010^{2} 10[°] Frequency [Hz] Frequency [Hz] Frequency [Hz]

➤ Very bad < 0.2Hz and 0.2Hz < low < 3Hz and low > 70Hz

Good coherences up to 70Hz

➢ Good vibration transmission between floor and table up to at least 70Hz

> Fixations efficient (beeswax and adjustable feet)

Transfer function of the table with its 4 feet

8

- ✓ First resonance (phase=90°):
 - No masses: 80Hz
 - Masses of 594kg: 53Hz
 - Masses of 1188kg: 41Hz

Need to find the impact of resonances on relative motion

Integrated RMS of relative motion due to resonances (above 10Hz)

Weight of FD on table: not negligible / to ATF2 tolerances (10nm)

Need to find modal shape of the first resonance in order to choose optimal boundary conditions to break it

Modal shape measurements : Collaboration CERN-LAPP

11

✓ Impact given with an impact testing hammer on different points of the table

- Modal shape reconstruction
 - ≻ For each resonance (up to 150Hz)
 - \succ In the 3 axis of space
- ✓ 6 first modes obtained: rigid body modes in the 6 degrees of freedom

Modal shape	1) T-X	2) T-Y	3) R-Z	4) T-Z	5) R-Y	6) R-XT	: Translation
Frequency (Hz)	34.8	41.8	60.6	80.6	103.9	136.0	R:
Damping (%)	2.8	2.6	2.4	2.3	2.1	4.0	Rotation

Negligible boundary conditions compared to the table rigidity

Table fixation on one entire face to break these 6 resonances

Experimental set-up

Evolution of resonances with masses simulating FD weight

GURALP geophones (0.1Hz - 13Hz)

ENDEVCO 86 accelerometers (13Hz - 100Hz)

Microphone of type 4189

Signal to Noise Ratios (SNR) and Coherences

➤ Very low SNR < 0.2Hz and low SNR > 70Hz

Good coherences up to 70Hz

➢ Good vibration transmission between floor and table up to at least 70Hz

> ➔ Fixations efficient (beeswax and bolts)

Transfer function of the table with the 3 plates

Integrated RMS of table relative motion to the floor

✓ Above 0.2Hz with weight of FD on table: relative motion = 3.5nm

Very good compared to ATF2 tolerances (10nm)!!!

➢ In reality, should be lower because measurement errors of 1% induce relative motion calculation errors of 1.6nm (GM at KEK > 0.2Hz: 164nm)

Second part: Vibratory study of ATF2 final doublets with their intermediary supports made at LAPP

- ✓ Vibratory study of an ATF2 sextupole with its supports
- ✓ Vibratory study of an ATF2 quadrupole with its supports

¹⁷ Vibratory study of an ATF2 sextupole with its supports

Experimental set-up

GURALP geophones (0.1Hz - 13Hz)

GURALP positioning on a T-plate fixed with beeswax on the magnet

Setting of the magnet level.

Movers for movement of the magnet around the beam axis

Insertion of spacers for , coarse magnet alignment in the vertical axis

Coarse magnet alignment in the horizontal axis

ENDEVCO 86 accelerometers (13Hz - 100Hz)

¹⁸ Vibratory study of an ATF2 sextupole with its supports

Signal to Noise Ratios (SNR) and Coherences

Frequency [Hz]

Low Signal to Noise ratios:

- ➢ Between 0.7Hz and 3Hz
- ➢ Above 50Hz

Good coherences up to at least 100Hz

➢ Good vibration transmission between table and sextupole up to at least 100Hz

→ Good fixations of the sextupole to the table

¹⁹ Vibratory study of an ATF2 sextupole with its supports

Transfer function of the sextupole with its supports

✓ No resonances below 100Hz (phase \neq 90°)

Very good transfer function up to at least 100Hz

Sextupoles and intermediary supports well designed: Relative motion should be very low compared to tolerances

²⁰ Vibratory study of an ATF2 sextupole with its supports

Integrated RMS of sextupole relative motion to the table

✓ Between 0.7Hz and 13Hz: inaccurate measurements
 (low Signal to Noise Ratios and GURALP rocking on the magnet)

✓ Above 13Hz: relative motion of 0.26nm

Very good compared to ATF2 tolerances (10nm)!!!

²⁴Vibratory study of an ATF2 quadrupole with its supports

Experimental set-up

Movers for movement of , the magnet around the beam axis

Insertion of spacers for coarse magnet alignment in the vertical axis

Coarse magnet alignment in the horizontal axis

ENDEVCO 86 accelerometers (13Hz - 100Hz)

GURALP geophones (0.1Hz - 13Hz)

²²Vibratory study of an ATF2 quadrupole with its supports

Signal to Noise Ratios (SNR) and Coherences

- ✓ Low SNR:
 - ► Between 0.2Hz and 2.1Hz
 - ➢ Above 60Hz
- ✓ Very low SNR:
 - ➢ Below 0.2Hz

Coherence between a quadrupole and the honeycomb table 0.8 Coherences between a quadrupole and the honeycomb table 0.8 Due to low Signal to Noise Ratio 0.2 0.3 10⁻¹ 0.2 10⁰ 2.1 Hz

^{*} Good coherence up to at least 100Hz

➢ Good vibration transmission between table and quadrupole up to at least 100Hz

→ Good fixations of the quadrupole to the table

²³Vibratory study of an ATF2 quadrupole with its supports

Transfer function of the quadrupole with its supports

✓ First resonance at 75.8Hz (phase = 90°)

> Very good transfer function up to ~ 60 Hz

➔ Quadrupoles and intermediary supports well designed: Relative motion should be very low compared to tolerances

²⁴Vibratory study of an ATF2 quadrupole with its supports

Integrated RMS of quadrupole relative motion to the table

✓ Below 2.1Hz: inaccurate measurements (low Signal to Noise Ratio)

✓ Above 2.1Hz: relative motion of 2.4nm

Very good compared to ATF2 tolerances (10nm)!!!

Conclusion

- ✓ Boundary conditions of the honeycomb table optimized
 - First resonance at 92Hz: very high!!
 - > f>0.2Hz with FD weight: relative motion=3.5nm (even less!!: low SNR)
- ✓ Supports to fix sextupoles and quadrupoles to the table made
 - > 0.1Hz < No resonances < 100Hz > 0.1Hz < No resonances < 76Hz
 - relative motion=0.26nm > 13Hz
 relative motion=2.4nm > 2Hz
 - f < 13Hz and f < 2Hz: inaccurate measurements but RM should be << 10nm

→ *Relative motion of sextupole and quadrupole to the floor > 0.1Hz:*

Very good compared to ATF2 tolerances (10nm) More accurate measurements will be done at KEK (higher GM)

Future prospects

- ✓ Supports to fix BPM are being made at LAPP
- ✓ Quadrupoles and BPM have just arrived at LAPP

Before August 08 at LAPP:

Installation of the whole final focus system

Vibration measurements with and without cooling water

Work on the ATF2 for 6 months or one year (from September 08):

Supports and magnets installation and vibratory measurements Participation to the beam commissioning