

RTML – Design Status

Nikolay Solyak Fermilab

Nanobeam 2008, BINP, Novosibirsk, 26-30 May, 2008

Outline

- RTML Optic Design
- Technical Systems
- Emittance control

N.Solyak, RTML

Nanobeam'08 May 25-30, 2008

1

RTML Functions Transport Beam from DR to ML ~1.33 Km Match Geometry/Optics

- Collimate Halo
- Rotate Spin

İİL

- Compress Bunch (6mm→0.3mm)
- Preserve Emittance
 - Budget for Vert.norm. emittance < 4nm
- Protect Machine
 - 3 Tune-up / MPS abort dumps
- Additional constraints:
 - Share the tunnel with e-/e+ injectors
 - Need to keep geometries synchronized

N.Solyak, RTML

ilr **RTML** Schematic İİİ Note: e- and e+ RTMLs have minor differences in Return line (undulator in e⁻ linac side) and Escalator (DR's at different elevations); they are otherwise TURE DUMPS 200 KM identical. **Damping Ring** coll 1 (appm) coll2400ml Tunaround (218m) Return (13,200m) DR Stretch (600m) Escalator (600m) Skew 21m) * m Pulsed dump 220km Main Linac Spin Rolator (82m) with SKEW2 at end) 8C1 (238m) * (60m) (58m) * (63m) (89m) BC1 (238m) * (60m) (58m) * (63m) (69m)

N.Solyak, RTML

Nanobeam'08 May 25-30, 2008

Optics Design (RDR)

 Horizontal Arc out of DR ~km straight

In injector tunnel

- "Escalator" ~0.6 km vertical dogleg down to linac tunnel
- Return line, weak FODO lattice
 - In linac tunnel
 - Vertically curved
- Vertical and horizontal doglegs
- Turnaround
- 8° arc in spin rotators
- BCs are net straight

DR-RTML hand-off point defined extraction point where $\eta, \eta' \rightarrow 0$ RTML mostly defined by need to follow LTR geometry Stay in same tunnel Design is OK at *conceptual* level

N.Solyak, RTML

Nanobeam'08 May 25-30, 2008

DR connection (RDR)

DRX Connection (2)

DR

tunnel

e+

e^T RTML

e⁺ src

 Current design is entirely planar (horizontal plane)

- DRs are in different planes
- Sources need cryomodules and SC solenoids
 - Big heavy objects which want to sit on the floor
- Working agreement between sources, DR, RTML, CFS:
 - CMs and SC solenoids always sit on floor
 - RTML hangs from source tunnel ceiling at same location as in linac tunnel

ML Tunnel - 2.14 m

Vert. beam separation

DR Tunnel – 1.44 m Vertical separation 0000000 e+ RTML e<u>sr</u>c

N.Solyak, RTML

Nanobeam'08 May 25-30, 2008

"Getaway" Straight (or "DR Stretch")

- About 1.1 km long
- Has two parts
 - "Low-beta" region with decoupling and emittance measurement
 "High bets" region with
 - "High-beta" region with collimation system
- Includes PPS stoppers
 - For segmentation
- Good conceptual design
 - Need to match exact required system lengths
 - Need to consider conflicts with source beamlines in this area
 - Beta match between lowand high-beta optics not great

N.Solyak, RTML

Nanobeam'08 May 25-30, 2008

Escalator

- Vertical dogleg
 - -Descends 7.85 meters over ~590 m
 - Uses 2 vertical arcs separated by weak FODO lattice
- Good conceptual design
 - Uses Keil-style eta matching
 - Beta match between "strong" and "weak" lattices not great
- Escalator-linac tunnel connection does not match CFS design
 - Need to make match according CFS design

N.Solyak, RTML

Return Line

- Weak FODO lattice at ML ceiling elevation (1Q/~36m), XY_{corr}+BPM
- Vertically curved tunnel thru ML area
 - Dispersion matching via dipole correctors
- Laser-straight tunnel thru BC area
- Electron line ~1.2 km longer than positron

Goes thru undulator area

Electron Return line and positron transfer line need to be exchanged

Turnaround

- Actually does 3 jobs
 - Turns the beam around
 - Note: need to bend away from service tunnel
 - Brings beam down from ceiling to linac elevation (near floor)
 - Vertical dogleg
 - Adjusts x position to meet linac line
 - Horizontal dogleg
- Order: H dogleg, V dogleg, turnaround
- High packing area ~90% magnets

Spin Rotation

- Design based on Emma's from NLC ZDR
 - 2 solenoids with Emma rotator between them
 - Rotate spin 90° in xy plane while cancelling coupling
 - 8° arc
 - Rotate spin 90° in xz plane
 - Another 2 solenoids + Emma rotator
- Basic design seems sound
 - Very small loss in polarization from vertical bending in linac tunnel
- Important issue = bandwidth
 - Off-energy particles don't get perfect cancellation of dispersion and coupling

Bunch Compression

• Longitudinal emittance out of DR:

il

- 6 mm (or 9mm) RMS length
- 0.15% RMS energy spread
- Want to go down to 0.2-0.3 mm RMS at IP
 - Need some adjustability
- Use 2-stage BC to limit max energy spread
 - Compress to 1 mm at 5 GeV
 - Accelerate to 15 GeV
 - Compress to final bunch length
- Both stages use 6-cell lattice with quads and bends to achieve momentum compaction (wiggler)
 - Magnet aperture ~40cm

RF system

- •BC1 has 3 CMs with quads (+spare kly)
- •BC2 has 14 linac-style RF units (3CM's each) + 1 spare

Alternative Bunch Compressor

- An alternate bunch compressor design exists
 - 6-cell wigglers (~150 m each, 102 bend magnets) replaced by chicanes (~40 m each, 4 bend magnets)
 - Advantages: Shorter, Simpler, Cheaper (?)
 - Disadvantages:
 - Big x offset from straight line (~1.8 m)
 - Doesn't have natural locations for dispersion tuning quads

N.Solyak, RTML

Halo and Energy Collimation

- ILC specification:
 - Needs to limit halo at end linac to ~10⁻⁵ of total beam power
- Halo Collimation after DR
 - BDS specification as requirement
 - Halo power ~ 220 W
 - Provide machine protection
 - Collimators stop out-of-control beam from DR
 - Need to keep out-of-control beam from frying collimators, too!
- Energy collimators after betatron collimation system
 - Scattered particles
 - Off-momentum particles / bunches from DR
- Additional energy collimators
 - In BC1 wiggler
 - In BC2 wiggler
- Collimators in Extraction Lines ELBC1 and ELBC2
- Need to understand machine protection issues for these collimators

Pulsed Extraction Lines

- 3 Extraction Lines in each RTML side for emergency beam abort (MPS) and tune-up
 - EL1 after DR exit, diagnostics, global correction
 - 5 GeV, σ_{E} =0.15%

İİL

- Keep DRs running @ full power during access
- Keep DRs and extraction tuned during access
- MPS abort (~100ns)
- ELBC1 after BC1
- 5 or 4.88 GeV, σ_{E} = 0.15% and 2.5%
 - Tune up BC1 without beam in BC2
 - MPS abort
- ELBC2 after BC2
- 15 GeV, $\sigma_{\rm E}$ = 0.15% and 1.8%
 - Tune up BC2 without beam in linac
 - MPS abort
- All have 220 kW beam handling power
 - Full power for DRX, BC1
 - 1/3 power for BC2

ELBC1 Line Design

- Separation of the two lines at CM location (14m down) - 2m;
- Separation of the dump and the ML \sim 5 m;
- DBA to decouple dispersion and beam size issues
- Beam size on the dump window ~15 mm^2
- Length = 20.7 m

- Two collimators to protect downstream triplet
- intercepts 3.9 kW/train and 18.8 kW/train

N.Solyak, RTML

ELBC2 Design

50cm Diameter x 2m long Aluminum Ball Dump with Local Shielding

Cost (\$1M each) is dominated by:

- 3-loop radioactive water processing system
- The CFS infrastructure, shielding, etc.

Similar dumps in use at SLAC

50kW 3-loop 2006 Rad Water Cooling for ISIS Neutron Spallation Targets

N.Solyak, RTML

ilc

Technical Systems

- Magnets and power supplies (~4600 Magnets)
 - SC quads/correctors/solenoids (36/54/8),
 - RT quad, correctors, septa
 - Pulsed magnets, kickers, bends, FB/FF correctors
- Vacuum system
 - Current baseline
 - 2 cm OD stainless chambers
 - Exceptions: BC bends, extraction lines, CMs
 - 20 nTorr in long line from DR to turnaround
 - Passivated to reduce outgassing rate
 - 100 nTorr in balance of system (turnaround to linac)
 - Not in situ baked
 - No photon stops or water cooling in bend areas
- Dumps and Collimators
 - 3 dumps per side with 220 kW capacity
 - Betatron and energy spoilers / absorbers with ~200 W capacity
 - Few collimators with ~10 kW capacity

Collimators

Adjustable-aperture Collimators	DR stretch	Turnarou nd	BC1	BC2	RL	Water cooling	Pow er W	Half-gap size, mm	N
Adjustable two-jaws Rcoll, x	2x2	0	0	0	0.6	no	5	3.4 (x)	
Adjustable two-jaws Rcoll, y	2x2	0	0	0	0.6	no	5	1.0 (y)	
Adjustable two-jaws Rcoll, longit	0	2x2	0	0	0.6	no	5	0.98	
Adjustable two-jaws Rcoll, longit	0	0	2x2	0	0.6	no	5	18	
Adjustable two-jaws Rcoll, longit	0	0	0	2x2	0.6	no	5	4	
Total:	8	4	4	4					20

Fixed-aperture Collimators									
Fixed Ecoll	2x8	2x2	0	0	20	yes	200	6.5	
Fixed Ecoll	0	0	2x2	0	20	yes	200	30	
Fixed Ecoll	0	0	0	2x2	20	yes	200	5	
Total:	16	4	4	4					28

Technical Systems (2)

- Instrumentation
 - BPM's at every quad, plus high dispersion points in wigglers
 - Serve a number of functions: feedback, feed-forward, beam-based alignment and steering, energy diagnostic
 - room-temp C- or L-band (BC2 upstream) cavity BPM's
 - 3 suites of Laser Wires (LW) in each RTML
 - 4 wires per suite, set up for 2D emittance measurement
 - Bunch length measurement
 - LOLA (3.9 GHz) + screens in each BC
 - Possibly EO monitors (not in RDR baseline)
 - SLMO's (Synchrotron Light monitor) in BC wiggler spread measurement (4)
 - 3 dedicated phase monitors per side
 - Toroids, 4 ion chambers and 150 photomultipliers (MPS)

Technical Systems (3)

- 1.3 GHz SC RF system plus supporting utilities
 - 48 CMs per side (1 RF source per 3 CMs, as in ML)
 - 3 CM x "8Q" in BC1
 - 15 RFunits x "9-8Q-9" in BC2
 - BC1: 2nd source with RF switch for redundancy

- LLRF issues

- Phase stability
- Beam loading compensation
 - Beam loads RF at decelerating phase
 - Unlike ML, need to "jump" both amplitude and phase of RF source @ beam time

Cryo system (~6.5% cost of ML Cryo system)

- Part of ML cryogenic system
 - Also supports SC solenoids in spin rotator
- BC's are laser-straight
 - Probably OK only ~1 km long

jii.

WP4: R&D on Phase and amplitude stability

The required tolerances for amplitude and phase stability in BC are very tough:

- Phase stability tolerance: 0.25°/0.16° long/short bunch
- Amplitude stability tolerance: 0.5%/0.35% rms long/short bunch
- Bunch compressor RF cavities operate close to zero-crossing:
 - Phase 105° off-crest (BC1)
 - Phase 27.6° off-crest (BC2)
- The gradient in the RF system ~30 MeV/m. Zero crossing regime complication for LLRF system.
- Study of the phase and amplitude stability of the RF system @ FLASH (2009).

Cost and its Distribution

- CFS + BC RF system = 68% of costs
 - Correlated much of CFS cost is housing for BC cryomodules
- Remainder dominated by RT _{CFS} beam transport
 - Quads, correctors, BPMs, vacuum system
- Small amount of "exotica"
 - Non-BPM instrumentation, controls, dumps, collimators

Sources of luminosity/emittance degradation

- From DRX arc, turnaround, BC wigglers
- Beam-ion instabilities
- Beam jitter
 - From DR
 - From stray fields
- Dispersion
 - DR extraction
 - Misaligned quads
 - Rolled bends

- Coupling

- DR extraction septum
- Rolled quads
- Misaligned bends
- Quad strength errors in spin rotator
- Pitched RF cavities
 - Produce time-varying vertical kick
- RF phase jitter
 - Varies IP arrival time of beams
- Beam halo formation
- Collimator and cavity Wakefields
- Space charge
- Resistive wall wakes in vac. chamber

LET BBA @ ILC RTML

Several BBA used:

- Ballistic Alignment (BA)
- Kick minimization (KM)
- Dispersion Free Steering
- Dispersion Bumps
- 4D Coupling Correction
- Adaptive alignment
- Wakefield Bumps

Feed-Back and Feed Forward system

Luminosity

- Synchrotron Radiation
 - Mainly managed by optics design
 - 0.9 µm emittance growth in x (budget 2 µm)
 - Vertical bends in Escalator, Dogleg negligible
 - Analytic estimates indicate no CSR issues
- Beam-ion instabilities
 - Sets 20 nTorr pressure limit in Return line
 - Limits jitter growth to 9% (ie, jitter out = 1.09 * jitter in)
- Beam Jitter

İİĻ

- Handled by feed-forward in turnaround
- Sets limits on tolerable AC fields in Return line
 - ~ 2 nTesla limit, comparable to measured value in ESB @ SLAC
- Can be improved by intra-train feedback as well

Luminosity (2)

- Halo formation
 - Not a problem in Return line (vacuum 10nTorr from ion instability)
 - Sets 100 nTorr vacuum spec downstream of RL (10⁻⁶ halo formation)
- Dispersion
 - Local correction via steering / orbit control
 - •BBA quads have individual power supplies
 - •BPM at each quad
 - •Y corrector at each quad, X corrector at each F quad
 - Global correction via normal / skew quads in locations with dispersion
 - •DRX arc, Escalator, Turnaround / vertical dogleg
 - •BC1 / BC2 wigglers
 - Sets requirement for 6 cells with 90/90 phase advance

Luminosity (3)

- Collimator Wakefields
 - Y wakes seem marginal for "razor blade" collimators
 - Probably OK for tapered collimators
- Coupling

ilr

İİL

- Global correction via orthonormal skew quads
 - Two decoupling systems
 - After DRX arc
 - After spin rotator
- Pitched RF cavity
 - Global correction via BC dispersion knobs
 - YZ coupling (pitch) + ZE coupling (off-crest running) = YE coupling (dispersion)

Our old canonical set, should consider more realistic misalignments... Survey people would prefer we use cold specs for all components.

Error	Cold Sections	Warm Sections	With Respect To	
Quad Offset	300 µm	150 µm	Cryostat	
Quad Tilt	300 µrad	300 µrad	Cryostat	
Quad strength	0.25%	0.25%	Design Value	
BPM Offset	300 µm	200 µm	Cryostat/Survey	
BPM-Quad Shunting	20 µm?	7 µm	Quadrupole	
BPM Resolution	1 µm	1 µm	True Orbit	
Bend tilt	300 µm	300 µm	Survey Line	
Bend Strength	0.5%	0.5%		
RF Cavity Offset	300 µm	n/a	Cryostat	
RF Cavity Pitch	200 µrad	n/a	Cryostat	
Cryostat Offset	200 µm	n/a	Survey Line	
Cryostatic Pitch	20 µrad	n/a	Survey Line	

N.Solyak, RTML

ilr

İİL

Nanobeam'08 May 25-30, 2008

Emittance budget

• Not there yet... Budget just 4 nm (factor ~2 larger)

Region	BBA method	Dispersive or Chromatic mean Emittance Growth	Coupling mean emittance Growth
Return Line	Kick Minimization and feed-forward to remove beam jitter	0.15 nm	2 nm (without correction)
Turnaround and spin rotator	Kick Minimization and Skew Coupling Correction	1.52 nm (mostly chromatic)	0.4 nm (after correction)
Bunch Compressor	KM or DFS and Dispersion bumps	greater than 4.9 nm (KM + bumps) 2.68 nm (DFS and bumps)	0.6 nm (without correction)
Total		~5 nm almost all from BC	3 nm (without complete correction)

N.Solyak, RTML

ilr

ĪĪ

Conclusion

- Lot's of work was done for RDR
- TDR stage will require much more work
 - Re-evaluate/match geometry and optics to accommodate DR changes and CFS req's
 - Static tuning
 - Dynamic tuning (ground motion)
 - Design/prototyping critical components
 - Need resources, funding, wide collaboration

ilr

RTML team:

SLAC, FNAL, ANL, LBL, Cornell Univ., KEK, DESY, INFN, CERN, KNU/Korea, UBC,

Design and Performance: *P. Tenenbaum, J. Smith, S. Molloy, M. Woodley, S. Seletskyi, E.-S. Kim, K. Kubo, M. Church, A. Latina, L. Wang, P. Spenzouris, M. Venturini, I. Reichel, ...*

Engineering and Civil: <u>V. Kashikhin, P.Bellomo, T.Mattison</u>, <u>Y.Suetsugu, J. Noonan</u>, <u>P.Michelato</u>, <u>T.Markiewicz</u>, <u>R.Larsen</u>, <u>M.Wendt</u>, <u>John Carwardine</u>, <u>C.Saunders</u>, <u>T.Peterson</u>, <u>F.Asiri</u>, <u>J.-L Baldy</u>, <u>G.Aarons</u>, <u>T.Lackowski</u>, ...