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DemandDemand

• Needed for energy-recovery accelerators.Needed for energy recovery accelerators.



Elliptical symmetryElliptical symmetry
• Two modes of charge oscillation:

• Monopole and quadrupole• Monopole                      and quadrupole
• However, the phenomena and the equations are 

quite similar to those in circular symmetricalquite similar to those in circular symmetrical 
systems



Elliptical symmetryElliptical symmetry
• 2D motion equation:2D motion equation:
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• Circular symmetry • Elliptical symmetry
⎩ +βγ yx

• Two coordinates or two modes are to be 
“compensated” in this case.co pe sa ed s case



Linearized equationLinearized equation
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0δ′δ′• Conditions of emittance minima are still

• Let’s divide an injector into two parts:
1 Circular symmetrical one;

.0=δ′=δ′ yx

1. Circular symmetrical one;
2. Elliptically symmetrical one.

• At the beginning of the second part
.  and  ,  , yxyxyx δ′=δ′δ=δ=



Further linearizationFurther linearization
• Preserving generality, let βγ = 1, j = 1, 

x = 1 + ξ а y = 1 + υx = 1 + ξ, а y = 1 + υ

⎪
⎧

⎟⎟
⎞

⎜⎜
⎛ δ⎟⎞⎜

⎛ ξ−+δ⎟⎞⎜
⎛ υ−ξ−−=′δξ′+″δ ,11132

⎪
⎪

⎪
⎪
⎨

⎟⎟
⎞

⎜⎜
⎛ δ⎟⎞⎜

⎛ υ−+δ⎟⎞⎜
⎛ ξ−υ−−=′δυ′+″δ

⎟⎟
⎠

⎜⎜
⎝

δ⎟
⎠

⎜
⎝

ξ+δ⎟
⎠

⎜
⎝

υξδξ+δ

11132

,
2424

2 yxxx

• If ξ = υ = 0 its solution at the given initial
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• If ξ = υ = 0, its solution at the given initial 
conditions is δx = δy = cos(z + φ)

• We need z + φ = nπ at the exit for emittance φ
compensation



Further linearizationFurther linearization
• If ξ ≠ 0 and υ ≠ 0, than δx = cos(z + φ) + νx, 

δy = cos(z + φ) + νyy y
• A linearized equation for νx and νy
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• With initial conditions νx = 0, ν'x = 0, νy = 0, 
ν' = 0ν y = 0



Linear conditions for 
emittance minima

• δ ' = δ ' = 0 → ν ' = ν ' = 0:• δ x = δy = 0 → νx = νy = 0:
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• First condition is valid if x ≈ y ≈ const.
• The simplest way to meet the second condition

⎪⎩

The simplest way to meet the second condition 
is to control (ξ - υ) at the exit.



First shot
• An optimal uniform beamline Δφ = 3π/2: x = 1, 

x’ = 0 j = 1 g = 0 09 L = 11 11

First shot

x = 0, j = 1, g = 0.09, L = 11.11.
• An achromatic bend: Di = 0.0925, -0.0530, 

2.0982, -1.4862, 2.0980.



First shotFirst shot
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x0 = y0 = 1, x’0 = y’0 = 0, j = 1 → εx = 0.099, εy = 0.080.



Linear optimization
• The same uniform beamline

Linear optimization
The same uniform beamline.

• All the lenses are optimized to meet the linear 
conditions of emittance minimum and
η = η' = 0 at the exitη = η' = 0 at the exit.

• Lenses became: Di = 0.0862, -0.0544, 2.0560, 
-2.0860, 1.5583.,



Linear optimizationLinear optimization
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Linear conditions met → εx = 0.074, εy = 0.037.
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Full optimization
• L g and all the lenses are optimized to

Full optimization
L, g and all the lenses are optimized to 
minimize the emittance and meet η = η' = 0 at 
the exit.
The uniform beamline became: L =12 718• The uniform beamline became: L =12.718, 
g = 0.07181.

• Lenses became: Di = 0.0291, -0.0755, 2.2989, i , , ,
-2.3700, 2.2745.



Full optimizationFull optimization
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Nonlinear optimization → εx = 0.034, εy = 0.022.
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Optimization resultsOptimization results
Beamline: εx εy

Elliptically symmetrical, not optimized 0.099 0.080
Linear optimization 0.074 0.037p
Full optimization 0.034 0.022
Uniform circular symmetrical 0.023Uniform circular symmetrical 0.023
Simplest nonuniform 0.030

1 ’ ’ 0 j 1 Δ 2x0 = y0 = 1, x’0 = y’0 = 0, j = 1; Δφ ≈ 2π.
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ConclusionsConclusions
• Emittance compensation is possible also in 

elliptically symmetrical systemselliptically symmetrical systems.
• The conditions of compensation are similar to 

ones in circular symmetrical systems butones in circular symmetrical systems, but 
significantly more complicated.

• Linear conditions of compensation can be usedLinear conditions of compensation can be used 
as the initial estimate for full numerical 
optimization.

• The qualities of elliptically symmetrical 
beamlines and circular symmetrical ones are 
similar. 



Thank you for attention!


