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Demand

* Needed for energy-recovery accelerators.
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Elliptical symmetry

« Two modes of charge oscillation:

. Monopole and quadrupole

 However, the phenomena and the equations are
quite similar to those in circular symmetrical
systems



Elliptical symmetry

2D motion equation:
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 Elliptical symmetry

Two coordinates or two modes are to be
“‘compensated” in this case.



Linearized equation
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where 0, =0X/X, 0, =0y/Y.

- Conditions of emittance minima are still 85 =& =0.

 Let's divide an injector into two parts:
1. Circular symmetrical one;
2. Elliptically symmetrical one.

« At the beginning of the second part
X=Y,8,=9,, and & =9
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Further linearization

 Preserving generality, letBy =1, =1,
X=1+¢c,ay=1+uvu
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« Ifc=u=0,its solution at the given initial
conditions is 0, = 0, = cos(z + @)

«  We need z + ¢ = n1r at the exit for emittance
compensation



Further linearization

« Ifg#0andu#0,than 6, = cos(z + @) + v,,
O, = COS(Z + @) + v,
* Alinearized equation for v, and v,
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*  With initial conditions v, =0, v\, =0, v, = Q,
v, =0



Linear conditions for
emittance minima

0, =0,=0—-ov,/ =v/ =0
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~irst condition is valid if X = y = const.

The simplest way to meet the second condition
is to control (¢ - u) at the exit.




First shot

An optimal uniform beamline A¢@ = 31/2: x = 1,
x'=0,]=1,9g=0.09, L =11.11.

An achromatic bend: D; = 0.0925, -0.0530,
2.0982, -1.4862, 2.0980.
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First shot

Yo=0,j=1—¢,=0.099, ¢, = 0.080.

Yo=1,X¢=

Xo =



Linear optimization

The same uniform beamline.

All the lenses are optimized to meet the linear
conditions of emittance minimum and
n=n' =0 at the exit.

Lenses became: D, = 0.0862, -0.0544, 2.0560,
-2.0860, 1.5583.



Linear optimization
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Linear conditions met — €, = 0.074, ¢, = 0.037.



Full optimization

L, g and all the lenses are optimized to
minimize the emittance and meetn=n'= 0 at
the exit.

The uniform beamline became: L =12.718,
g=0.07181.

Lenses became: D, = 0.0291, -0.0755, 2.2989,
-2.3700, 2.2745.



Full optimization
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Nonlinear optimization — ¢, = 0.034, Gy, = 0.022.



Optimization results

Beamline: € -

X \/

Elliptically symmetrical, not optimized | 0.099 | 0.080

Linear optimization 0.074 1 0.037
Full optimization 0.03410.022
Uniform circular symmetrical 0.023
Simplest nonuniform 0.030

Xo=Yo=1,Xp=Y=0,]=1; Ap = 2.




Conclusions

Emittance compensation is possible also in
elliptically symmetrical systems.

The conditions of compensation are similar to
ones Iin circular symmetrical systems, but
significantly more complicated.

Linear conditions of compensation can be used
as the initial estimate for full numerical
optimization.

The qualities of elliptically symmetrical
beamlines and circular symmetrical ones are
similar.






