Emittance Compensation in Non-Circular-Symmetrical Beamlines

Sergey V. Miginsky Budker INP

Demand

- Needed for energy-recovery accelerators.

Elliptical symmetry

- Two modes of charge oscillation:

- Monopole

and quadrupole
- However, the phenomena and the equations are quite similar to those in circular symmetrical systems

Elliptical symmetry

- 2D motion equation:

$$
x^{\prime \prime}+\frac{(\beta \gamma)^{\prime}}{\beta \gamma} x^{\prime}=\frac{j}{2 x}-g x .
$$

- Circular symmetry

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\frac{(\beta \gamma)^{\prime}}{\beta \gamma} x^{\prime}=\frac{j}{x+y}-g x, \\
y^{\prime \prime}+\frac{(\beta \gamma)^{\prime}}{\beta \gamma} y^{\prime}=\frac{j}{x+y}-h y .
\end{array}\right.
$$

- Elliptical symmetry
- Two coordinates or two modes are to be "compensated" in this case.

Linearized equation

$$
\left\{\begin{array}{l}
\delta_{x}^{\prime \prime}+\left(\frac{2 x^{\prime}}{x}+\frac{(\beta \gamma)^{\prime}}{\beta \gamma}\right) \delta_{x}^{\prime}=-j\left(\frac{2 x+y}{x(x+y)^{2}} \delta_{x}+\frac{y}{x(x+y)^{2}} \delta_{y}\right), \\
\delta_{y}^{\prime \prime}+\left(\frac{2 y^{\prime}}{y}+\frac{(\beta \gamma)^{\prime}}{\beta \gamma}\right) \delta_{y}^{\prime}=-j\left(\frac{2 y+x}{y(x+y)^{2}} \delta_{y}+\frac{x}{y(x+y)^{2}} \delta_{x}\right) .
\end{array}\right.
$$

where $\delta_{x}=\delta x / x, \delta_{y}=\delta y / y$.

- Conditions of emittance minima are still $\delta_{x}^{\prime}=\delta_{y}^{\prime}=0$.
- Let's divide an injector into two parts:

1. Circular symmetrical one;
2. Elliptically symmetrical one.

- At the beginning of the second part

$$
x=y, \delta_{x}=\delta_{y}, \text { and } \delta_{x}^{\prime}=\delta_{y}^{\prime}
$$

Further linearization

- Preserving generality, let $\beta \gamma=1, j=1$, $x=1+\xi, a y=1+u$

$$
\left\{\begin{array}{l}
\delta_{x}^{\prime \prime}+2 \xi^{\prime} \delta_{x}^{\prime}=-\left(\left(\frac{3}{4}-\xi-\frac{1}{2} v\right) \delta_{x}+\left(\frac{1}{4}-\frac{1}{2} \xi\right) \delta_{y}\right), \\
\delta_{y}^{\prime \prime}+2 v^{\prime} \delta_{y}^{\prime}=-\left(\left(\frac{3}{4}-v-\frac{1}{2} \xi\right) \delta_{y}+\left(\frac{1}{4}-\frac{1}{2} v\right) \delta_{x}\right) .
\end{array}\right.
$$

- If $\xi=u=0$, its solution at the given initial conditions is $\delta_{x}=\delta_{y}=\cos (z+\varphi)$
- We need $z+\varphi=n \pi$ at the exit for emittance compensation

Further linearization

- If $\xi \neq 0$ and $u \neq 0$, than $\delta_{x}=\cos (z+\varphi)+v_{x}$,

$$
\delta_{y}=\cos (z+\varphi)+v_{y}
$$

- A linearized equation for v_{x} and v_{y}

$$
\left\{\begin{array}{l}
v_{x}^{\prime \prime}+\frac{3}{4} v_{x}+\frac{1}{4} v_{y}=2 \xi^{\prime} \sin (z+\varphi)+\left(\frac{3}{2} \xi+\frac{1}{2} v\right) \cos (z+\varphi) \\
v_{y}^{\prime \prime}+\frac{3}{4} v_{y}+\frac{1}{4} v_{x}=2 v^{\prime} \sin (z+\varphi)+\left(\frac{3}{2} v+\frac{1}{2} \xi\right) \cos (z+\varphi)
\end{array}\right.
$$

- With initial conditions $\mathrm{v}_{x}=0, \mathrm{v}_{x}^{\prime}=0, \mathrm{v}_{y}=0$, $\mathrm{v}_{y}^{\prime}=0$

Linear conditions for emittance minima

- $\delta_{x}{ }^{\prime}=\delta_{y}{ }^{\prime}=0 \rightarrow \mathrm{v}_{x}{ }^{\prime}=\mathrm{v}_{y}{ }^{\prime}=0$:

$$
\left\{\begin{array}{l}
\left.(\xi+v)\right|_{z=L}-\frac{1}{2} \int_{0}^{L} \sin (2(z+\varphi))(\xi+v) d z=0, \\
\left.(\xi-v)\right|_{z=L}-\int_{0}^{L}[\sin (z+\varphi) \cos (z / \sqrt{2}+\varphi+L(1-1 / \sqrt{2})+ \\
+\frac{3}{\sqrt{2}} \cos (z+\varphi) \sin (z / \sqrt{2}+\varphi+L(1-1 / \sqrt{2})](\xi-v) d z=0 .
\end{array}\right.
$$

- First condition is valid if $x \approx y \approx$ const.
- The simplest way to meet the second condition is to control $(\xi-\mathrm{U})$ at the exit.

First shot

- An optimal uniform beamline $\Delta \varphi=3 \pi / 2: x=1$, $x^{\prime}=0, j=1, g=0.09, L=11.11$.
- An achromatic bend: $D_{i}=0.0925,-0.0530$, 2.0982, -1.4862, 2.0980.

First shot

Linear optimization

- The same uniform beamline.
- All the lenses are optimized to meet the linear conditions of emittance minimum and $\eta=\eta^{\prime}=0$ at the exit.
- Lenses became: $D_{i}=0.0862,-0.0544,2.0560$, -2.0860, 1.5583.

Linear optimization

Linear conditions met $\rightarrow \varepsilon_{x}=0.074, \varepsilon_{y}=0.037$.

Full optimization

- L, g and all the lenses are optimized to minimize the emittance and meet $\eta=\eta^{\prime}=0$ at the exit.
- The uniform beamline became: $L=12.718$, $g=0.07181$.
- Lenses became: $D_{i}=0.0291,-0.0755,2.2989$, -2.3700, 2.2745.

Full optimization

Optimization results

Beamline:	ε_{x}	ε_{v}
Elliptically symmetrical, not optimized	0.099	0.080
Linear optimization	0.074	0.037
Full optimization	0.034	0.022
Uniform circular symmetrical	0.023	
Simplest nonuniform	0.030	

$$
\begin{gathered}
x_{0}=y_{0}=1, x_{0}^{\prime}=y_{0}^{\prime}=0, j=1 ; \Delta \varphi \approx 2 \pi . \\
\varepsilon_{n} \cong \varepsilon^{\mathrm{c}} r \sqrt{\frac{|I|}{I_{0} \beta \gamma}}
\end{gathered}
$$

Conclusions

- Emittance compensation is possible also in elliptically symmetrical systems.
- The conditions of compensation are similar to ones in circular symmetrical systems, but significantly more complicated.
- Linear conditions of compensation can be used as the initial estimate for full numerical optimization.
- The qualities of elliptically symmetrical beamlines and circular symmetrical ones are similar.

