

Monitoring Alignment & Stabilisation with high Accuracy MONALISA an Update

David Urner

Paul Coe

Matthew Warden

Armin Reichold

MONALISA

- Is an interferometric metrology system for continuous monitoring of position critical accelerator components
- Consists of a fixed network of evacuated interferometric distance meters

Concepts

Compact Straightness Monitor Very Schematic View of ATF2 Setup

Compact Straightness Monitor

- 6D position transferred from left to right
 - breaking of symmetries is important
- Preliminary simulation results of CSM Resolution:
 - $\sigma_{\rm y}$:10nm
 - distance meter resolution: 1nm = Resolution in z-direction
 - Positional change of optics components with respect to each other: 1nm. That's the challenge!

Measurement lines

We measure distances along measurement lines using two techniques:

- •Absolute distance interferometry <µm resolutions
- •Displacement interferometry nm resolutions

Each line is the same, and is capable of performing both types of measurement.

Nanobeam'08

Interferometer operation

Interferometer operation

Nanobeam'08

Distance meter

- Measurement Frequencies:
 - FFI: up to 10kHz
 - FSI: up to 1Hz
- Long term stability determines low frequency behaviour
 - Minutes possible
 - Lot of work needed to extend to hours or days.
- Advantage of interferometric measurement system is fairly low cost per line.
 - Use of telecom frequency allows use of cheap commercial hardware
 - Cheap amplification of light
 - Current estimate: as low as £800 per distance metre

Current Status

First Measurements in Vacuum

- Unexpected mechanical behaviour
- Tensioning of a drum
 - more mechanical vibrations in vacuum
 - Hard to separate these from resolution effects
- Need for vibration isolation and possibly damping

Changing Pressure

FSI

- Dominated by actual vibrations! ۲
 - Need damping —
 - Need better launch head

Compact Launch Head

- Launch Head needs following features:
 - Compact
 - Stable/rugged
 - Temperature
 - Vibrations
 - Cheap
- Prototype:
 - Adjustable
 - Currently being built
- Future: Jig to position
 - Glue components onto substrate

Fixed Frequency Interferometry

16

Frequency Stabilisation

- · Lock laser to spectral feature of rubidium
- Use a frequency doubling crystal to reach this frequency

Frequency Stabilisation

- All parts are at Oxford
- Mechanical assembly in progress

Active feedback:

- measure pressure in inner and outer bellow chamber
- stabilize sum of pressures

Summary

- Very first measurements in vacuum
- Compact Launch Head
- Frequency Stabilization
- Vacuum System for ATF2

Nanobeam'08