NEW POSITRON SOURCE AT THE KEKB INJECTOR LINAC BASED ON ORIENTED TUNGSTEN CRYSTAL CONVERTER

KEKB Positron Source Layout

Primary Electron Beam Parameters

- Energy 4GeV •
- Horizontal Angular Spread (RMS) 0.2 mrad ullet
- Vertical Angular Spread (RMS) -0.1 mrad ullet
- Horizontal Emittance 660 mm mrad ullet
- Vertical Emittance 360 mm mrad
- Transverse Beam Size -0.7 mm ullet
- Bunch Duration -10 ps
- Maximal beam rate -50 Hz
- Bunch charge -7.8 nC

Positron production efficiencies for the first(second) bunch:

- Crystalline 10.5- mm-thick tungsten target $0.23 \pm 0.02(0.24 \pm 0.02)$
- Amorphous 14-mm-thick tungsten target $0.20\pm0.01(0.20\pm0.01)$

Acceptance condition:

$$8.6 \frac{MeV}{c} , $p_t < 2.4 \frac{MeV}{c}$$$

Cylindrical tungsten target

- Number captured positrons is depended on acceptance radius.
- For the given acceptance condition measured positron production efficiency essentialy exceeds results of simulation...

Acceptance condition:

Accept. condition	Spatial spread σ , mm	Ang. spread $\sigma', mrad$	Norm. emittance $\epsilon_n, \mathbf{mm} \cdot \mathbf{mrad}$
Old	0.866 ± 0.003	0.123 ± 0.003	1240
New	0.873 ± 0.004	0.145 ± 0.001	1520

KEK experimental setup:

Geometry of the GEANT4 model

Positron yield from Wa targets

4 GeV beam

8 GeV beam

HPC Cluster SKIF-Polytech

- 24 dual processor nodes
- Processors type : dual core Intel Xeon 5150, 2.667GHz
- MPI throughput: 800 Mb/c
- MPI latency : 2.5 usec.
- Peak performance: 1TFlop
- Network data storage system: 5TB.

e+ spectra beyond target and in counter, 4GeV beam, 9mm Wa

Calorimeter window : 18.6 – 21.4 MeV/c Peak rms : 0.6 MeV/c

Positron-production efficiencies measured for the tungsten crystal as a function of the crystal thickness (The solid curve through the data are gamma-function fits of the data.

Life cycle of target:

- In the model an energy deposition induced by single bunch considered as instant.
- Cooling period between bunches assumed to be 1/f, where f – beam repetition rate.

Stages of simulation:

 Calculation dE(r)/dV energy deposition induced by single bunch

2. Determination a spatial temperature distribution inside target after bunch T(r) by means dE(r)/dV

 Solution of the heat transfer equation to find T(r) after cooling period

Calculation of energy deposition induced by beam bunch

• Math. model : Set of Boltzmann equations:

$$\begin{split} \vec{\Omega} \nabla \Phi_i(\vec{r},\vec{\Omega},E) + \Sigma_i(\vec{r},E) \Phi_i(\vec{r},\vec{\Omega},E) + \\ \sum_j \int d\,\Omega' \int dE\,' \Sigma_{j,i}(\vec{r},\vec{\Omega}\,' \rightarrow \vec{\Omega},E\,' \rightarrow E) \Phi_j(r,\vec{\Omega}\,',E\,') = \\ S(\vec{r},\vec{\Omega},E), \\ J = \int d\,\vec{r} \int dE \int d\,\vec{\Omega} \,\Phi(\vec{r},\vec{\Omega},E) D(\vec{r},\vec{\Omega},E) \end{split}$$

- Particles in effect : photons (photo, Compton, pair production), electrons, positrons (bremsstrahlung, ionization)
- Solution method: statistical testing Monte Carlo
- Tools : GEANT4, CASCADE

Beam model parameters:

- Beam energy 4 GeV.
- Bunch charge 7.8 nC.
- Gaussian model is used for spatial angular distribution of electrons .

Beam model:

Beam model:

Energy deposition induced by single bunch (GEANT4) :

Geometry model for the heat transfer problem:

Determination a spatial temperature distribution after bunch:

• Math. Model: $\frac{d E(\vec{r})}{dV} = \rho \int_{T_0(\vec{r})}^{T(\vec{r})} du c(u)$ where ρ - density, c(u) - specific heat,

where ρ - density, c(u) - specific heat, $T_0(\vec{r}), T(\vec{r})$ - temperatures at \vec{r} before and after bunch, respectively.

• Method: Iterative procedure

Heat transfer between bunches

• Math. model:

$$c(T)\rho\frac{\partial T}{\partial t} = div(k \, grad \, T)$$

• Boundary conditions : convective heat flux on upstream plane and side cylindrical surface of copper body:

$$k \frac{\partial T}{\partial n} + h(T - T_c) = 0, \quad T_c = 25^{\circ}C, \quad h = 0.93 \times 10^{-2} W/mm^2 K$$

• Initial condition: defined from solution of

$$\frac{d E(\vec{r})}{dV} = \rho \int_{T_0(\vec{r})}^{T(\vec{r})} du c(u)$$

with respect to the upper limit $T(\vec{r})$, $T_0(\vec{r}, t=0)=25^{\circ}C$

• Solution method : Finite Volume Method (FVM)

Test example: Heat transfer in infinite tungsten cylinder.

- Initial condition: $T(\rho, t=0)=100 \exp(-\frac{\rho^2}{2\sigma^2})$, $\sigma=0.7 mm$
- Boundary condition: convective flux,

$$T_{c} = 0^{0} C$$
, $h = 0.015 W / mm^{2} K$

• Analytical solution:

$$T(\rho,t) = \frac{2}{\rho_0} \sum_{i=0}^{\infty} \exp(-\lambda_n^2 \alpha t) \frac{J_0(\lambda_n \rho)}{J_0^2(\lambda_n \rho_0) + J_1^2(\lambda_n \rho_0)}$$
$$\int_0^{\rho_0} \rho T(\rho,t=0) J_0(\lambda_n \rho) d\rho, \quad \lambda_n: \quad \lambda \rho_0 \frac{J_1(\lambda \rho_0)}{J_0(\lambda \rho_0)} = \frac{h \rho_0}{k}$$

Test example: Heat transfer in infinite tungsten cylinder.

Steady state temperature distribution just before bunch for 14 mm amorphous target:

Steady state temperature distribution immediately after bunch:

Temperature rise at downstream side of the 14 mm Wa target

Max. temperatures before and after bunch as function of irradiation time for the 14mm Wa target

Target model for simulation:

