Advanced Beam Dynamicsc Workshop Nanobeam - 2008 May 25-30, 2008, Budker INP, Novosibirsk, Russia

## SPATIAL RESOLUTION OF NON-INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION

### A.P. Potylitsyn



Tomsk Polytechnic University,

634050, pr. Lenina 2, Tomsk, Russia

e-mail: pap@interact.phtd.tpu.edu.ru

#### **Diffraction radiation approach**









## Measurements of the ODR projected vertical polarization component with PMT

**Experimen** 

Theory



**Optical filter 550±20nm** 

#### Angular acceptance and beam size effect in ODR experiment



#### Optical transition radiation (OTR) beam size monitor

OTR monitor

**ODR** monitor



#### Model

We shall introduce Cartesian coordinates on the target, lens and detector using T, L, D indices and use dimensionless variables

$$\begin{cases} x_T \\ y_T \end{cases} = \frac{2\pi}{\gamma \lambda} \begin{cases} X_T \\ Y_T \end{cases}, \begin{cases} x_L \\ y_L \end{cases} = \frac{\gamma}{a} \begin{cases} X_L \\ Y_L \end{cases}, \begin{cases} x_D \\ y_D \end{cases} = \frac{2\pi}{\gamma \lambda} \begin{cases} X_D \\ Y_D \end{cases}.$$

$$\begin{cases} E_x^D(x_D, y_D) \\ E_y^D(x_D, y_D) \end{cases} = const \int dx_T dy_T \int dx_L dy_L \times \\ \times \begin{cases} x_T \\ y_T \end{cases} \frac{K_1 \left( \sqrt{x_T^2 + y_T^2} \right)}{\sqrt{x_T^2 + y_T^2}} \exp \left[ i \left( x_T x_L + y_T y_L \right) \right] \times \exp \left[ i \frac{x_T^2 + y_T^2}{4\pi R} \right] \times \\ \times \exp \left[ -i \left( x_L \frac{x_D}{M} + y_L \frac{y_D}{M} \right) \right], \quad R = \frac{a}{\gamma^2 \lambda}, \text{ M is magnification} \end{cases}$$

For a rectangular lens with aperture  $2x_m \times 2y_m$ 

$$-x_m \le x_L \le x_m \quad , \quad -y_m \le y_L \le y_m$$

One may obtain

$$\int_{-x_m}^{x_m} dx_L \int_{-y_m}^{y_m} dy_L \exp\left[-ix_L\left(x_T + \frac{x_D}{M}\right)\right] \exp\left[-iy_D\left(y_T + \frac{y_D}{M}\right)\right] =$$

$$= 4 \frac{\sin\left[x_m\left(x_T + \frac{x_D}{M}\right)\right]}{x_T + \frac{x_D}{M}} \frac{\sin\left[y_m\left(y_T + \frac{y_D}{M}\right)\right]}{y_T + \frac{y_D}{M}} =$$

$$= G_x(x_T, x_D, x_m)G(y_T, y_D, y_m).$$

For M=1 fields on the detector surface may be written:

$$\begin{cases} E_x^D(x_D, y_D) \\ E_y^D(x_D, y_D) \end{cases} = const \int dx_T dy_T \begin{cases} x_T \\ y_T \end{cases} \frac{K_1 \left( \sqrt{x_T^2 + y_T^2} \right)}{\sqrt{x_T^2 + y_T^2}} \times \\ \times \exp\left[ i \frac{x_T^2 + y_T^2}{4\pi R} \right] G_x \left( x_T, x_D, x_m \right) G \left( y_T, y_D, y_m \right). \end{cases}$$

Intensity on the detector surface

$$I = const \left( \left| E_x^D \right|^2 + \left| E_y^D \right|^2 \right)$$

OTR image from a single electron(point spread function, PSF)

r<sub>m</sub>= 50

I. arb. units

r<sub>m</sub>=100

1

0.8

0.5

0.4

0.2

0.

0

b

R = 0.001

I. arb. units

0.05

 $10000 | \int r_m = 250$ 

8000

6000

4000

2000

0.

 $r_{\rm D}$ 



a) Normalized shape of OTR source image on the detector plane for lens aperture $r_m = 100$ (left curve) and  $r_m = 50$ (right curve) in wave zone (R = 1); b) OTR source image in «pre-wave zone» (R = 0.001) for the same conditions and with the same normalizing factors;

0.02 0.04 0.05 0.08 0.1 0.12 0.14

c) OTR source image at the fixed lens diameter for different distances between the target and the lens (R = 0.01,  $r_m = 250$  - right curve; R = 0.1,  $r_m = 25$  - left).

0.15

 $r_{D \max}$ 

0.1

*r*<sub>m</sub>=25

0.2

0.25

С

 $r_{\rm D}$ 

0.3

Spatial resolution of OTR monitor is defined by the distribution maximum position  $r_{D \max}$ 

$$r_{D \max} \Box \frac{3}{r_m} = \frac{3}{\gamma \theta_0}$$
  $\theta_0 = \frac{R_{L \max}}{a}$  - lens acceptance  
Dimension variable:  $\sigma \approx \frac{\gamma \lambda}{2\pi} \frac{r_{D \max}}{2\pi} \Box \frac{1}{2} \frac{\lambda}{\theta_0}$ 

- For optical diffraction radiation (ODR) there are 2 dimension parameters – wavelength and impact parameter h
- Which one is defined a spatial resolution?
- To obtain an intensity of ODR on detector surface one have to integrate ODR field on the target surface:

$$-x_{\max} \le x_t \le x_{\max} ,$$
  
$$-h \le y \le y_{\max}$$

#### A Very High Resolution Optical Transition Radiation Beam Profile Monitor // Ross M. et al. SLAC-PUB-9280 July 2002



#### Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam A. H. Lumpkin, W. J. Berg, N. S. Sereno, D.W. Rule,\* and C.-Y. Yao PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 022802 (2007)

E = 7 GeV  $\lambda = 0.8 \,\mu\text{m}$   $h = 1.25 \,\text{mm}$   $\sigma_x = 1375 \,\mu\text{m}$   $\sigma_y = 200 \,\mu\text{m}$ 





#### PSF for ODR case (parallel to target edge)









#### Dependence on impact parameter







#### Dependence of smoothed PSF on beam size

Ι

**Developed model** 



Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam

A. H. Lumpkin, W. J. Berg, N. S. Sereno, D.W. Rule,\* and C.-Y. Yao//

PHYSICAL REVIEW SPECIAL **TOPICS - ACCELERATORS** AND BEAMS 10, 022802 (2007)









## ODR imaging of a slit



## PSF – x, PSF-y for slit



## Conclusion

- 1.The model developed allows to obtain 2D- and 1D-distributions of an ODR intensity on detector as well as distributions of both polarized components for beam with finite transversal sizes.
- 2.The ODR distribution from single electron (point spread function, PSF) is defined by impact parameter h only (if  $h >> \lambda$ ).
- 3.Polorized components of PSF may provide higher spatial sensitivity in contrast with total PSF.
- 4.The deep shape of polarized ODR x-component depends on a transverse beam size along target edge.
- 5.Measurements of deep "smoothing" allows to achieve a spatial resolution  $\sigma_x \square 0.2H$  (i.e.  $\sigma_x \square 10 \ \mu m$  for  $H \square 50 \ \mu m$ )
- 6.For impact parameter  $h \Box 0.1\gamma \lambda/2\pi$  there may be lost ~ 60% of a total ODR intensity measuring ODR X-component only.



# Thanks for your attention!

