Advanced Sciences of Matter'

Crystal channeling for electron/position beams

T.Takahashi
Hiroshima Univ.

28 May 2008
Nanobeam 2008
BINP

Contents

- Brief Introduction
- Activity around Japan
- proton separation experiment at KEK
- electron beam at Hiroshima
- crystal fabrication
- Possible R\&D

Channeling

Very strong field \longrightarrow strong bending force

Application for beam handling

Graduate School of

Advanced Sciences of Matter

- beam extraction U70 (IHEP), TEVATRON

Crystal for Accelerators

Advanced Sciences of Matter

- beam extraction at
- IHEP, CERN
- beam collimation
- FNAL, IHEP, CEI

Positrons and Electrons

Positrons
trapped in between planes

Travels in \sim flat bottom of planer potentilal

Electrons

helical motion around axes

electron and positron

- positrons ,,, positive particle
- similar with protons but radiation
- actively studied for protons
- extraction
- collimation
- RHIC TEVATRON ,, LHC
- electrons,,, negative particle
- Complicated behavior in crystals
- not well studied
- de-channeling length $\sim 1 / 10$ of positive pariticle?

Plysics Laloratory Proton beam separation at 12 GeV PS

32mr bent in 12mm

$$
\longrightarrow \mathrm{B}=105 \mathrm{~T}
$$

Schematic of the experiment

Eraduate stiouit of
Advanced Sciences of Matter

Observed deflected beam

e- beam distortion at INS-ES

- 1.2 GeV e- w/ angular divergence of $\sim 1 \mathrm{mr}$

should De much more clear at ATF as $x^{\prime} / y^{\prime} \ll \theta_{\text {crit }} \sim 0.2 \mathrm{mr}$

High Energy

Physics
 tatoratioolectron beam bending at Hiroshima
 iraduate Schuor of

Advanced Sciences of Matter

150 MeV e- ring REFER

High Energy

Plusics Laloratiory Schematic of the set up

Observation of a beam profile at the FOS plate in each combination of θ and ϕ angles

Fiber Optics plate with a Scintillator (FOS plate)

Linhard angle : 0.7 mrad thickness of Si crystal: $16 \mu \mathrm{~m}$

High Energy

Physics
tanoratory (e - beam deflection $\mathrm{w} / 16 \mu \mathrm{~m} \mathrm{Si}$

Lahoratory
 Traduate School of
 parameter of bent crystal

Advanced Sciences of Matter

Size of Crystals

case for maximum bend w/ Si crystal $\theta_{\max }=\frac{L D}{R}\left(1-\frac{R_{c}}{R}\right)^{2}$

Eb[GeV]	250	40	8	4	1.3
	e+(e-)	e+(e-)	e-	e+	e-
$\theta \mathrm{c}[\mathrm{mr}]$	0.01	0.03	0.069	0.097	0.17
Ld[mm]	54(5.4)	9.5(0.95)	0.2	1	0.037
Rc[mm]	320	51	10	5	1.6
R [mm]	960	150	31	15	
$\operatorname{Lcr}(=\mathrm{Lb})[\mathrm{mm}]$	24(2.4)	4.1(0.41)	0.09	0.5	0.016
$\theta \max [\mathrm{mr}]$	25(2.5)	27(2.7)	3	31	3.3

example of bent crystals we want

1.3 GeV e-

mechanical bent

under study with
 Sharan company in Japan

> Si $400 \mu \mathrm{~m}, 300 \mu \mathrm{~m}, 500 \mu \mathrm{~m}$ thick (111) plane

fabrication cont

Bending angle

Strip crystals

-Size: $70 \times 0,05 \times 0,05 \mathrm{~mm}^{3}$
-Channeling axis: <111>.
-Preparation method: pure chemical -Crystal orientations:
x axis along <111> direction, y axis along <110> direction, z axis along <211> direction.

-As conseguence of main bending along the 70 mm direction, a secondary bending, called "anticlastic" arises in the $x-y$ cross section of the crystal. In mechanics this is a well know effect.
-Anticlastic bending radius is proportional to the imposed main bending radius

Guidi INFN

A new generation of crystal suited for axial channeling of negative particles

-Size: 70x10x0,043 mm3
-Channeling axes: <111>.
-Realization method: polishing and chemical etching, no lattice damage.
-Maximum bending angle: unknown (fracture strength needs to be experimentaly

-Using crystals with special orientations, as conseguence of bending along the main direction, it arises not only the anticlastic bending (which now becomes unuseful) but it arises also a seconday bending along the crystal thickness!
Typically
10 mm
Due to crystal special
orientations, as conseguence of
main bending, it arises not only
the anticlastic bending, but also
another bending mechanism,
which is bending the $<111>$ axis

Summary

- R\&D of beam handling with crystal is on going
- protons ,,,,, first demonstration at KEK PS
- electrons,,, test at INS 1.2 GeV and 150 MeV at Hiroshima
- plan and prospect
- ATF
- proposal approved (Hiroshima. KEK, FNAL) but suspended due to ATF2 project
- energy too low for bent crystal but still good place to study e- chanelling
- KEK LINAC
- SLAC LINAC
- crystals
- several way to fabricate crystal are being studied
- both for a few tens of micron and for tens of mm range

High Energy	Comparision between different crystals		
	Your suggested crystal	Ferrara strip crystal	Ferrara new crystal generation
Realization method	Mechanical methods	Chemical methods (no lattice damage)	Polishing methods (no lattice damage)
Geometrical acceptance	Small	Small	High (possibility to intercept the full beam)
Torsional effects	Yes	Yes	Reduced with respect to strips crystals, and easily removable througt an already available crystal holder
Bending angle considering a main bending radius of 10 mm	$\begin{gathered} 1,39 \mathrm{mrad} \\ (50 \mu \mathrm{~m} \text { thick }) \end{gathered}$	$\begin{gathered} 0,8 \mathrm{mrad} \\ (50 \mu \mathrm{~m} \text { thick }) \end{gathered}$	$\begin{gathered} 1,22 \mathrm{mrad} \\ (43 \mu \mathrm{~m} \text { thick }) \\ 1,42 \mathrm{mrad} \\ (50 \mu \mathrm{~m} \text { thick }) \end{gathered}$
Maximum bending angle	Needs to be measured	Needs to be measured	Needs to be measured
Bent axis	<100>	<111>	<111>

The new generation of crystals developed in Ferrara should be the best choice to study axial channeling of negative particles. The method offers a favorable axis, geometrical acceptance larger than for the strip crystal and geometrical distorsions due to mounting conditions can be more easily adjusted.

Lahoratory garamans strooltat
Advanced Sciences of Matter

- critical angle θ_{c}
- incident angle of particle to crystal axis of plane to be trapped
- Dechanneling length $L D$
- length that a particle can be in channeling condition
- not will known for negative particle assume $1 / 10$ of positive one?
- Critical Radius R_{C}
- particle is no longer trapper for $\mathrm{R}<\mathrm{Rc}$
- Dechanneling length for bent crystal $L B \sim$ length of crystal
- a reference for length of crystals

at ATF

-test for beam deflection/collimation at ATF
\rightarrow ATF2

