Low-Q IP-BPM & S-band BPM for ATF2

Hyoung Suk Kim

Kyungpook National University, KOREA

May 27, 2008

Overview of ATF IP-BPM

3. Characteristics

- \Rightarrow Narrow gap to be insensitive to the beam angle.
- \Rightarrow Small aperture (beam tube) to keep the sensitivity.
- \Rightarrow Separation of x and y signal.
- \Rightarrow Signal decay times for x and y are ~ 110 and 60 ns, respectively.(3-bunch beam 150ns) 2

Overview of low-Q IP-BPM

- 1. Strategy for new design
 - \Rightarrow Basic idea is same with ATF IP-BPM.
 - \Rightarrow Larger coupling slot dimension was considered to decrease signal decay time for sensor cavity.
 - \Rightarrow Stainless steel as cavity material is considered to decrease signal decay time for reference cavity.
 - \Rightarrow Signal decay times for sensor (x and y) and reference signals are
 - ~ 20 and ~ 30 ns, respectively.

2. Design parameter

		Ę			
Mode	f (GHz)	\mathbf{Q}_{0}	β	Q _{ext}	
X	5.712	5900	8	730	
Y	6.426	6020	9	670	
Ref	6.426	1170	0.0117	100250	

TABLE Design value.

Design of Low-Q IP-BPM

3. Designed model

Fabrication of Low-Q IP-BPM

RF test of low-Q IP-BPM

1. Experimental setup for RF test

Before brazing

After brazing

2. Reflection measurement for prototype Low-Q IP-BPM

Port	Freq. (GHz)	Q _L	Q _{ext}
X1	5.697	695	939
X2	5.697	695	942
Y1	6.417	526	689
Y2	6.417	530	692

Before brazing

	1 •
After	brazing

Port	Freq. (GHz)	Q _L	Q _{ext}
X1	5.718	762	1120
X2	5.718	762	1025
Y1	6.442	499	590
Y2	6.443	503	723

Block Diagram for electronics

Layout for electronics

Electronics Module

Electrical Specifications

Parameters	Units	Min.	Typical	Max.
Frequency Range,RF LO	GHz	6.2 6.2	6.4 6.4	6.6 6.6
Output Frequency	MHz	0		50
Conversion Gain	dB	5.9	7.2	7.7
Spurious	dBm		-49.2	-46.6
I, Q phase difference	degree		90 ± 3	
1 dB Compression (Input)	dBm	-12	-11	
Bias Voltage, Positive Negative	V		+ 6 -5	
Current, Positive Negative	mA		355	380 1

Electronics Module

Requirements for S-band BPM in ATF2

- 1. Purpose of S-band BPM
 - => To control beam orbit at final focus beam line in ATF2.
 - => To do BBA(beam-based alignment) with 1 μm at final focus beam line in ATF2. (BPM resolution of a few hundreds nm should be satisfied.)
- 2. Dynamic range
 - => A few mm
- 3. Diameter of beam tube=> 40 mm
- 4. Signal decay time
 => ~ 35 ns
 => For 2878 MHz, QL is ~ 650

Investigation of initial parameters

1. Classification of eigen-mode in cylindrical cavity

2. Cavity length effect

$$\omega_{mnp} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \sqrt{\left(\frac{x_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$
$$\lambda_{mnp} = \frac{2\pi}{\sqrt{\left(\frac{x_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}}$$
$$\Rightarrow R = 0.60988 \times \lambda = 0.60988 \times 10.5 \text{ cm}$$
$$= 6.4 \text{ cm for S - band TM}_{110}$$
$$\Rightarrow L < R/1.5 \approx 4.3 \text{ cm may be desired}$$
$$R/L \sim 6 \text{ cm}/1.2 \text{ cm}$$

Design of S-band BPM

1. Design parameter

TABLE Design value.					
Mode	f (GHz)	\mathbf{Q}_{0}	β	Q _{ext}	
Dinole	2 878	5075	6.8	750	
Dipole	2.070	5075	0.0	750	

2. Dimension of low-Q S-band BPM

14

Design of S-band BPM

3. Misalignment sensitivity in wave guide part

4. Electric field distribution along axis

Х

S-BPM

Design of S-band BPM

5. Position signal

6. Angle signal

S-BPM

Investigation of common-mode contamination

Fabrication of S-band BPM (cold test)

S-BPM

Cold test of S-band BPM

Isolation -38dB @ 2.8795GHz in vacuum

x-y isolation meas.

S-BPM

Cold test of S-band BPM

Signal decay time : 36ns(HFSS design value) / 21ns (cold test sample)

SBPM (cold test) sample sent to LAPP

S-BPM

S-BPM

Fabrication of S-band BPM (hot test)

SBPM for Sextupole Magnets

SBPM for Quadrupole Magnets

Fabrication of S-band BPM

Size of the Cu beam pipes to be attached to the SBPM

Material (C1020 also is OK.)	Size (mm)	Quantity (ea)	Usage
OFC_C10100	I.D=Φ40, O.D<Φ48, length: 200mm	3	For SM
OFC_C10100	I.D=Φ40, O.D<Φ48, length: 65mm	3	For SM
OFC_C10100	I.D=Φ40, O.D<Φ48, length: 595mm	2	For QM
OFC_C10100	I.D=Φ40, O.D<Φ48, length: 90mm	2	For QM

Future plan

- Experiments with the IPBPM-electronics will be discussed with KEK.
- We are investigating the inner diameter of the beam pipe for the SBPM.
 - HFSS simulation for the inner diameter change effect on the SBPM (this week).
 - in the case of not negligible effect ; order small quantity from US company (<u>www.h-tube.com</u>, w/ Cherrill's help)
 - in the case of no significant effect ; prepared by KEK in 2-3 weeks but O.D.=47mm /
 - I.D.=39mm (C1020 class is OK, w/ Terunuma's help)

- After decision on the beam pipe issue, fabrication of one S-band BPM as the final type will be finalized in KNU soon.
- Three S-band BPMs as the final type will be fabricated in KNU in series.