

Acceleration Laborationy Advanced Resparch Center for Beem Science Minstitute for Chemical Resparch Kyoto University

Permanent magnet Final Doublet for ATF2

Y. Iwashita, T.Sugimoto, M. Ichikawa, M.Yamada; Kyoto University T.Tauchi; KEK

Permanent Magnet Study Short History

2002~2005 First R&D program for FFQ

Permanent Magnet Quadrupole for Final Focus Lens in a Linear Collider 2002 Fixed strength PMQ 2003 Adjustable PMQ (double ring) 2004 Measurement and fine tuning 2005 Higher gradient at small bore

2006~2009 Second R&D program

Development and Application of PMQ for Linear **Collider and Neutron optics** 2006 Half scale Model of Rapid Cycling Sextupole 2007~Adjustable PMQ (2nd model)

2008

The 20mr Variable FFQ Magnet

hole for outgoing beam

hole for incoming beam

Double Ring Structure

The double ring structure

PMQ is split into inner ring and outer ring. Only the outer ring is rotated 90° around the beam axis to vary the focal strength.

Adjustable Permanent Magnet Quadrupole

R.L. Gluckstern and R.F. Holsinger: Adjustable Strength REC Quadrupoles, IEEE Trans. Nucl. Sci., Vol. NS-30, NO. 4, August 1983, <u>http://epaper.kek.jp/p83/PDF/PAC1983_3326.PDF</u>

Nanobeam 2008 Workshop, 25-30 May 2008 at BINP

Supersonic Motor (non-magnetic)

Total length: 260mm 20+55+70+55+20 = 220

Nanobeam 2008 Workshop, 25-30 May 2008 at BINP

The Parts

Magnet Bore

Pole magnets are attracted.

Alignment Jig

Rough Calculation

Gluckstern's variable PMQ

Definitions and the ratio:

 $2s_{1} - 2s_{2} + s_{3} = 0, \quad 2s_{1} + 2s_{2} + s_{3} \equiv S, \quad s_{1} \equiv \lambda S$ $\theta \equiv \theta_{1} = -\theta_{2} = \theta_{3}, \quad \mu \equiv kS$ $\theta_{1} = \theta, \quad \theta_{2} = -\theta, \quad \theta_{3} = \theta$ $\Rightarrow \quad s_{1} = \frac{\lambda\mu}{k}, \quad s_{2} = \frac{\mu}{4k}, \quad s_{3} = \frac{\mu - 4\lambda\mu}{2k} \quad (1)$

Square sum of off-diagonal elements becomes minimum at $\lambda \sim 0.078781$

Effect of errors : a slight slip on each disc S matrix with a slight slip, for instance on 1st disc $\mathbf{M}_{vPMQ}' = \mathbf{M}_{RQR}(s_1, k, \theta) \cdot \mathbf{M}_{DS}(d) \cdot \mathbf{M}_{RQR}(s_2, k, -\theta) \cdot \mathbf{M}_{DS}(d) \cdot \mathbf{M}_{RQR}(s_3, k, \theta)$ $\cdot \mathbf{M}_{DS}(d) \cdot \mathbf{M}_{RQR}(s_2, k, -\theta) \cdot \mathbf{M}_{DS}(d) \cdot \mathbf{M}_{RQR}(s_1, k, \theta + \delta)$

Fig. 4: OD elements of ΔM_Q with a slight slip on 3rd disc

Beam size at IP of ILC

$$\frac{\sigma_x}{\sigma_y} = \frac{656[nm]}{5.44[nm]}$$

For $\delta < 0.01$ [rad], $\Delta M_Q < 10^{-3}$

To be considered (1st) for ILC

The first version (double ring structure):

Soft magnet inside.

- Antisolenoid (Full cancellation) is needed where Superconducting Mag. brings vibration fear. But may be small effect on beam.
- ➡ Large repulsive force ~200kN to be supported.

To be considered (2nd) for ILC The second version (five-ring-singlet):

MNo soft magnet.

- Antisolenoid is still needed but partial. Vibration from Superconducting Mag. may be small effect on beam. (HTc coil?)
- ➡ Magnetic force should be small.
- Demagnetization resistance has to be checked.
- Effect on beam of μ =1.05 has to be checked.
- What about SD0?

Appendix

Demagnetization by Radiation

Energy deposit

	GLD	SiD	SiD (by Takahashi)	neutron
BeamCAL	17mW	13mW	29mW	
QD0	94mW	97mW	147mW	10 ⁵ [n/cm ² s]
SD0	11mW	11mW	11mW	
QF1	16mW	18mW	15mW	
SF1	0.4mW	0.3mW	1mW	

very preliminary results by T.Abe (University of Tokyo), in private communication

Demagnetization by 14MeV neutron

Magnet	Demag. ratio [/1x10 ¹³ n/cm ²]	iHc [Oe]
47H	10.2%	
44H	1.8%	16
39SH	0.7%	21
32EH	0.3%	30

T. Kawakubo, et al., The 14th Symposium on Accelerator Science and Technology, Tsukuba, Japan, November 2003, pp. 208-210, in Japanese, http://conference.kek.jp/sast03it/WebPDF/1P027.pdf

Continuous 1mo.(2.6x10⁶s) operation may cause about 0.01[%] of (reversible?) demagnetization on NEOMAX 32EH. (1% for 10 years) ... needs more info.

