Detector Integration of GLD and GLDc

Nov. 16, 2007 Y. Sugimoto KEK

Compact GLD Option

- Motivation
 - GLD and LDC will write a common Lol
 - The detector design should have common parameters
 - Common parameters should be determined based on detailed simulation study, but it will take a time ~0.5y(?)
 - As a working assumption for the moment, a modified design of GLD with the central values for B and R_{CAL} between original GLD and LDC is made
 - B=(3+4)/2=3.5 T
 - R_{CAL}=(2.1+1.6)/2=1.85 m

$\bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet$

Parameters (1)

			GLD	GLDc	
Iron Yoke	Barrel	Rout	7.2 m	6.9 m	
		Rin	4.5 m	4.1 m	
		Weight	6090 t	5080 t	
	E.C.	Zin	4.2/4.5 m	3.7/3.95 m	
		Zout	7.5 m	6.9 m	
		Weight	3260 t / side	3050 t / side	
Solenoid	В		3 T	3.5 T	
	R		4 m	3.6 m	
	Z		4 m	3.6 m	
	Weight		~330 t	~300 t	
	E		1.6 GJ	1.7 GJ	
Stray field @Z=10m		70 G	120 G		

5

Parameters (2)

			GLD	GLDc
TPC	Rin (active region)		0.45 m	0.45 m
	Rout		2.0 m	1.75 m
	Zmax		2.3 m	2.0 m
Barrel CAL	ECAL	Rin	2.1 m	1.85 m
		Rout	2.3 m	2.05 m
		BRin ²	13.2 Tm ²	12.0 Tm ²
	HCAL	Rout	3.5 m	3.15 m
		Thickness	1.2 m	1.1 m
	Weight		1750 t	1130 t

BRin²=10.2 for LDC and 8.1 for SiD

Parameters (3)

			GLD	GLDc
EC CAL	ECAL	Zmin	2.8 m	2.4 m
		Zmax	3.0 m	2.6 m
	HCAL	Zmax	4.2 m	3.7 m
		Thickness	1.2 m	1.1 m
	Weight		270 t / side	270 t / side
CAL	Total weight		2290 t	1670 t
Detector	Barrel yoke + solenoid		6.4 kt	5.4 kt
weight	Barrel total		8.2 kt	6.5 kt
	Endcap total		3.5 kt/side	3.3 kt/side
	Total weight		15 kt	13 kt

Assembly

- GLD
 - Barrel part (Yoke+Sol.) > 6000 ton
 - For CMS style assembly (using 2000 ton crane to descend), it should be split into 5 rings and there will be many gaps
 - Large stray field
 - Difficulty in alignment of rings
 - In present design, GLD barrel yoke is split in R- and φ-direction into 24 pieces
 - 400-t cranes in the underground exp hall and surface assembly hall
- GLDc
 - Barrel part (Yoke+Sol.) < 6000 ton
 - Pure CMS style assembly can be done by splitting the barrel part into 3 rings and splitting each end cap part into two halves
 - 50~100-t crane underground, 2000-t crane for the shaft, and 80-t crane in the surface assembly hall

Design of GLDc Endcap

- GLD/GLDc endcap yoke is vertically split
- Installation and maintenance of Muon detectors are done from the splitting plane (X=0 plane) like Belle detector
- Support rings can be put between iron slabs to increase the rigidity of the endcap yoke
- Usually two halves may be connected tightly and split only for installation and maintenance of sub-detectors
- Endcap calorimeters can be arranged without dead space
- Because hadrons make shower in the endcap iron, small gap of muon detectors does not make inefficiency of muon identification

- Calculation by FEA method
 - Endcap is treated as a whole and surface force is calculated
 - The surface force at the front surface of the endcap is obtained as a function of R, and parameterized by a simple function
 - This simple function is used for the calculation of the deformation
 - Z-constraint only at R=4.1m (Inner radius of barrel yoke)
 - 3D model calculation

• Magnetic Force

₽

• Results

	Anglo	Support ring	Δ	Z	
	Angle	Support mig	r=0.4 m	r=6.9 m	
20	190	180 No	-21 mm	+11 mm	ф=0
30	160		-23 mm	-13 mm	φ=90
3D	360	No	-12 mm	-3.9 mm	
20	3D 180 1 (r=4.1m)	1(r-11m)	-5.7 mm	-0.6 mm	ф=0
30		1 (1=4.111)	-5.9 mm	-0.5 mm	φ=90
3D	360	1	-4.6 mm	-0.2 mm	
20) 180 2 (r=2.3, 4	2(r-22.41m)	-2.6 mm	+0.5 mm	ф=0
30		0 2 (r=2.3, 4.1m)	-2.7 mm	-0.7 mm	φ=90
3D	360	2	-1.8 mm	-0.4 mm	
20	0.0. 400	0 3 (r=2.3, 3.2, 4.1m)	-1.7 mm	+0.3 mm	φ=0
30	100		-1.8 mm	-0.7 mm	φ=90
3D	360	3	-1.1 mm	-0.4 mm	
2D	360	No	-90 mm	0 mm - Fix	SiD-like: 23x(10cm Fe + 5cm gap)

3D: 3-dimensional model

2D: Axial symmetric 2-dimensional model

180: Splitting endcap360: Non-splitting endcsp

Gap in sub-detectors

- Endcap calorimeters
 - Split along a plane which does not cross the IP (x=30cm plane, for example)
- Endcap muon detector
 - Split along the x=0 plane (same as iron yoke)
 - Tracks entering the muon-detector gap can be detected by TPC and calorimeters
 - If the particle is a pion, it creates hadronic shower in iron yoke, and would be detected by muon detector even if there is small gap

Pacman design and FD support

- A: slide sideway using air pad
- B: supported from the floor of platform
- QD0 cryostat is supported by the support tube and the support tube is supported from B
- We can put additional support for the support tube at the entrance of endcap yoke to damp the vibration, if necessary
- Upper part of B (~10 ton) must be removable by crane for installation and removal of the support tube
- C: slide along the wall (D) (common to both experiments) ~50 tonx2
- D: part of the wall
- Wall distance can be as small as 11.5 m from IP, if the crane can access to 2.65m from the wall
- Construction of C is done by a mobile crane (CMS style)
- Inner radius of pacman should be determined after design of gate valve etc. between QD0 and QF1 is fixed

Pacman design and FD support

Pacman design and FD support

Still smaller cavern soption

- Forget about crane access
- Forget about safety issues
- Design with cavern floor width as small as 21m can be drawn with the supporttube scheme
 - Pacman "C" moves upwards (using a small gantry crane fixed to the wall?) in push-pull operation
 - There is no way for a person to run away from one side of the detector to the other side (escape tunnel ?)

B field of GLDc

B₀=3.5 T B(10.5m<Z<20m) <50 G B(R>8m) <500 G

L* for GLDc

Component	Start	Length
End cap yoke	3.7 m	
BCAL	3.8 m ^(note-1)	0.2 m
BPM	4.0 m	0.2 m (??)
QD0 cryostat	4.2 m	0.264 m
QD0 coil (L*)	4.464 m	

L* of ~4.5 m seems adequate

note-1:

By putting BCAL at $Z>Z_{endcap}$, strength of anti-DID can be reduced because R-component of solenoid B-field near the hole of end cap yoke can help guiding low energy pair-background into the beam exit hole

Difference between GLD and LDC

- CMS style or not (same for GLDc)
- Thickness of iron return yoke
- Diameter of endcap hole
- Beam pipe shape
- Global shape: octagonal or dodecagonal
- L* \rightarrow Depends on Z_{endcap}

Thickness of iron return yoke

- GLD:2.7m, GLDc:2.8m, LDC:2.15m
 - GLD is designed to make stray field at Z=10m small enough (70/120 G for GLD/GLDc)
 - LDC design will cause large stray field outside the detector
 - If an electronics hut is built close to the detector, we should define a tolerable level of stray field (less than x gauss at $R > R_{det} + y$)
 - Electronics malfunction (saturation of ferrite core, etc.)
 - Safety (handling of tools, human health, etc.)
- Thickness of iron slabs
 - GLD: 25~30cm / LDC: 10cm
 - Deflection due to magnetic force should be estimated

Diameter of endcap hole

- GLD: R=40cm
 - Not changed from 2001 (JLC detector)
 - QD0
 - Compensation (Anti) solenoid
 - 10cm thick tungsten support tube
- LDC: R=30cm(?)
 - No compensation solenoid
- Information from BDS group is necessary
 - Do we really need anti-solenoid?
 - What is the design of the anti-solenoid?
 - Do we need extra space around QD0 for alignment mechanism?

Beam pipe shape

- GLD: Long straight section made of AI
- LDC: Long conical section made of Fe
- → We (FCAL group?) need
 - Estimation of the wall thickness enough to support the pressure
 - Simulation study for lum. measurement
- Beam pipe near IP
 - Pair background simulation based on new machine parameters in RDR at 500 GeV and 250 GeV (We may have to ask GDE)

Global shape

- GLD: Dodecagonal shape in order to reduce unnecessary gaps between TPC and ECAL, between HCAL and solenoid, and between solenoid and iron return yoke
- LDC: Octagonal shape
- For calorimeters, dodecagonal shape is better (see SiD study: M.Breidenbach at ALCPG2007)
- How should we decide for return yoke?

Other Issues

- Issues not studied yet
 - Power consumption
 - Detector cooling
 - Cable/pipe extraction and handling
 - Detector alignment
 - Luminosity (run period) needed for track-based alignment
 - Support scheme of beam pipe/VTX/SIT
 - Vibration analysis
 - Seismic issues
 - Services for detector solenoid compatible with push-pull
 - Fire safety

Next step

- Some issues can be studied only after detector parameters are defined, but we should start immediately studying on many issues in order to make a common design of ILD
 - Tolerable stray field of the detector solenoid
 - Structure of return yoke
 - Diameter of endcap hole
 - Pair background study with new machine parameters
 - Global shape of the detector
 -
 -