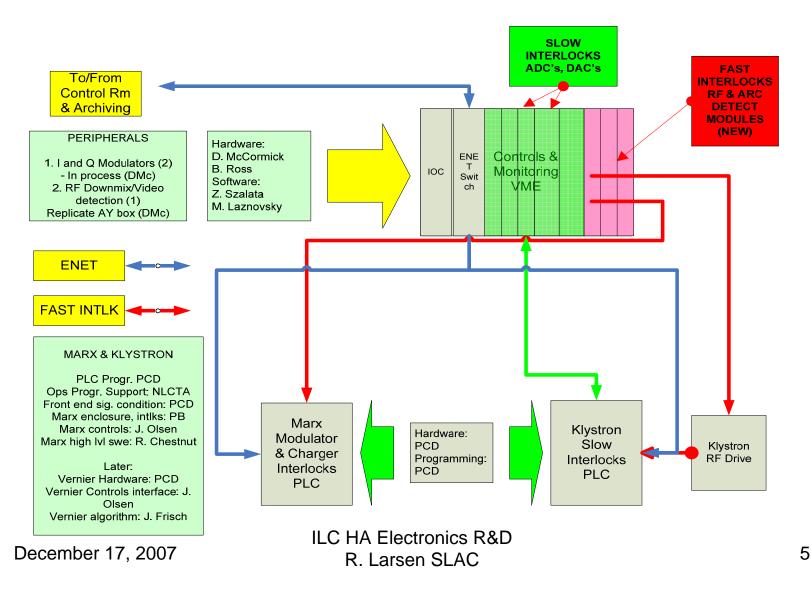
Electronics Standard Platform R&D Plans 2008-10

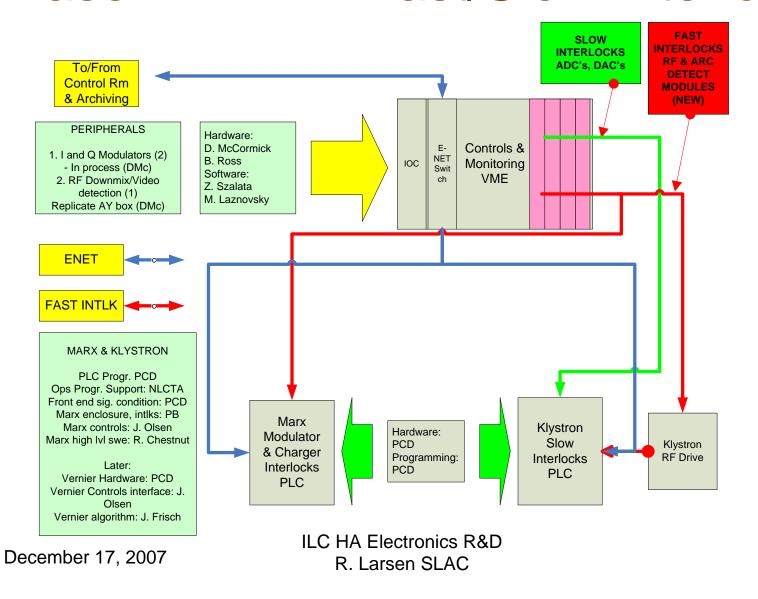
Ray Larsen
December 2007

Summary

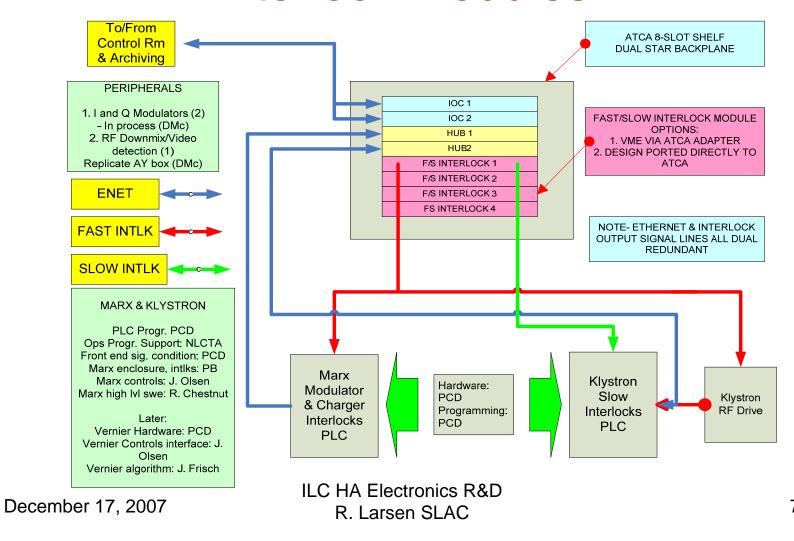
- Basic Investigations
 - Operation ATCA platform started 2006 with University of Illinois (UIUC)
 - 16-slot and 5-slot shelves; dual controllers and hub switches, single shelf managers
 - Successfully demonstrated auto-failover of controllers/ links
 - Ran error tests on shelf managers
 - Designed first schematic of VME to ATCA Adapter
 - Enable further evaluations in actual test systems using off-the-shelf VME modules


Test Application

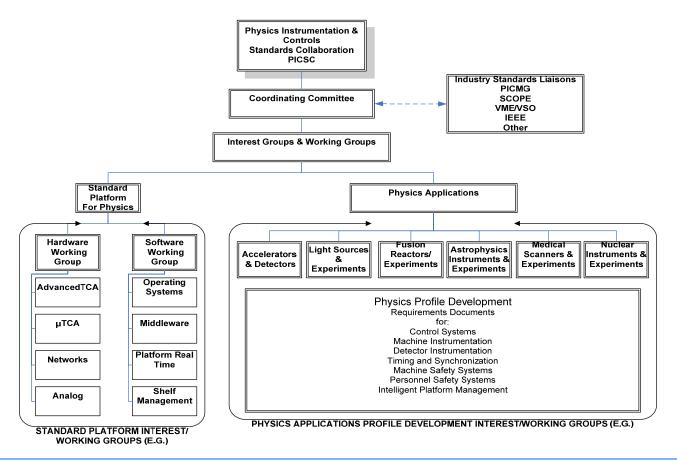
- RF Klystron Test Station Interlocks
 - SLAC building test stations for 10 MW klystrons, power distribution system and cavity input couplers
 - Plan: Transition interlock design from initial VME design to ATCA platform
 - Phase I (2008): RF Station 1
 - Implement slow interlocks on standard COTS VME; Fast/Slow RF interlocks on new VME module, FPGA & EPICS based
 - When Adapter complete early CY08, test a new F/S module on ATCA shelf
 - Phase II (2008-9):
 - Cable slow interlocks into new modules as a test; can eliminate VME ADC-DACs
 - Phase III (2009-10): RF Station 2
 - Port F/S design to ATCA module; build modules
 - Design all-rear interconnects to enable module hot-swap
 - Install in 8-slot ATCA shelf (4 Interlocks, dual Controllers and Hubs)
 - Transition software, firmware; test system


VME to ATCA Adapter

- Adapter and Demo System
 - Adapter will enable testing of standard VME modules on ATCA platform
 - Can be used for quickly configuring lab bench, beamline test stations etc.
 - Contract underway with SAIC to design-build-test 3 adapters
 - Deliver Q1 CY08 with RT test software running on test station
 - Will test with new BPM module, interlock module in progress


Phase I - VME Interlocks

Phase II – VME Fast/Slow Interlocks


Phase III – ATCA Shelf w/ Fast/Slow Interlock Modules

Standard ATCA Profile for Physics

- Draft Profile for AMC Cards
 - A draft is in circulation among small group along with proposal for collaboration to down-select features for physics applications
 - Plan is to include interest groups in accelerators & large detectors; fusion, astro, photon machines & experiments; nuclear physics fields
 - Will be expanded as needs dictate based on growing body of experimentation with ATCA, AMC, µTCA, high speed digital and analog instrumentation applications, connector schemes etc.

Discussion & Coordination

- Google group established for emails: atca4physics@googlegroups.com
- Wiki site for documents, responses: http://groups.google.com/group/atca4physics/web/physics-profile-discussion-summary

DESY XFEL Workshops

- Two one-day workshops held December 3-4
 - Attended by reviewers from ANL, FNAL, SLAC (Downing) and Industry (SAIC)
 - LLRF- Propose packaging on standard ATCA full card platform; development well along
 - Crate Standard Propose using ATCA and μTCA (small AMC card chassis)

Results:

- Some management worries about meeting timelines, possible technical risk. Want comparisons, backup plans.
- Eckhart Elsen proposes that ILC program can directly contribute, help assure success; details to be discussed

Proposed Workshops

- GDE Meeting, Sendai, March 2008
 - Researching organizing one or more sessions as tutorials, examples of R&D underway, industry developments
- 2008 NSS-MIC Conference, Dresden, November 2008
 - NSS organizing committee approved 2-day ATCA workshop as part of Short Course program
 - Program committee includes reps from Saclay, SLAC, FNAL, ANL, KEK, DESY, Juelich, others tbd.

VME-ATCA Adapter Progress

- Phase I Circuit and Software Platform
 - Design review held last December 11; Phase I is complete
 - Identified small additional power board to be added to Phase II
- Phase II Complete layout, board fab, testing 3 units, deliver with software
 - Phase II start approved and Purchasing about to be activated
 Quote for additional board design due this week
 - Completion date ~end of March assuming no significant contract delays as experienced in Phase I.
 - SLAC will contract with layout house and purchase/supply parts for 3 units

Examples of ATCA Work in Progress

- Machine Instrumentation
 - LLRF, Interlocks, chassis standards DESY
 - 12 Ch 16-bit BPM board design FNAL
 - Plan for L-Band interlock transition to ATCA SLAC
- Experiments
 - AGATA Global readout System LNL, Fr.
 - CMS Trigger System Upgrade CERN, Imperial College, Princeton
 - Generic High Speed DAQ Board and Hub SLAC (Huffer & Haller group)
- Together these efforts explore most key features of ATCA analog and digital performance

Other HA Work at SLAC

- High Availability design is being investigated in the following areas:
 - DC N+1 modular power systems
 - Power system redundant controllers
 - Fast pulse kickers for ILC damping rings
 - Diagnostic systems for Intelligent Platform Management (IPM) power equipment such as large bulk supplies, Marx Modulators, short pulse induction modulators

Conclusion

HA Design Has Arrived

- Spurred initially by telecom industry developments coupled with HA analysis of needs of ILC
- Essential for design of systems to meet stringent requirements in next-generation machines
- Effective package for high performance and low cost; HA features optional
- Developing over a wide range of technical areas

Next steps:

- Establish effective collaboration for standardization, interoperability of equipment built around the physics world
- Coordinate with industry groups & manufacturers