Precision Measurement of the Stop Mass at the Linear Collider

November 20-2007

Caroline Milsténe

In Collaboration with Ayres Freitas, Michael Schmitt, André Sopczak Publication in Preparation

Introduction

• We have previously studied the light stop, with a small mass difference to the neutralino, in an attempt to understand EW baryo-genesis the asymmetry matter anti-matter and the role of the stop in dark matter annihilation.

Phys. rev. D 72,115008(2005)

- This analysis aims at the minimization of the systematics while using more realistic data, stop hadronization/fragmentation included. We will show that:
- The precision is improved in two ways:
 - a/ <u>The systematic uncertainties</u> are minimized by measuring the production cross-section at two energies \rightarrow cancellations.
 - b/ <u>The 2nd energy point chosen</u> at or close to the production energy threshold \rightarrow increased sensitivity to mass changes.
- The stop hadronization is included at production of the data → the c quark energy is spread out in the process of hadronization. As a result: the final number of jets increases- the c-tagging is now <u>necessary</u> to identify the charm jets (bench-marking for the vertex detector)
- Two approaches are used, a cut based analysis, a multi-parameters optimization analysis IDA
- The polarization improves further the signal to background ratio C. Milsténe

M. Carena, A. Finch, A. Freitas, C. Milstene, H. Nowak, A. Sopczak The mass precision measurement reached was dm~1.2GeV including theoretical errors

The Method

$$\sigma = \frac{N - B}{\varepsilon L}$$
$$Y(M_x \sqrt{s_{th}}) = \frac{N_{th} - B_{th}}{N_{pk} - B_{pk}} = \frac{\sigma(\sqrt{s_{th}}) \varepsilon_{th} L_{th}}{\sigma(\sqrt{s_{pk}}) \varepsilon_{pk} L_{pk}}$$

s - the cross-section [fb]

N- the number of selected data events

B- number of estimated background events

s -Square of the energy in center of Mass

N_{th}, B_{th}, s_{th} at or close to production threshold

 N_{pk} , B_{pk} , s_{pk} , at peak value

ethand ebk - total efficiency & acceptance threshold & peak

 L_{th} and \dot{L}_{pk} -Integrated luminosity

 M_x : Mass to be determined with high precision.

Y- ratio of signals at threshold and peak \rightarrow Allows Reduction of systematic uncertainty as well as uncertainties from L measurement.

Remark: yield close to threshold is very sensitive to $M_x \rightarrow$ choice of N_{th} and $B_{th...}$

Determination of the Stop Mass

$e^+e^- \rightarrow \tilde{t}_1 \overline{\tilde{t}_1} \rightarrow c \tilde{\chi}_0^1 \overline{c} \tilde{\chi}_0^1$ Theoretical Motivation

- <u>Electroweak Baryogenesis:</u> Sakharov Requirements:
 - 1- Baryon Number Violation (SM Anomalous process)
 - 2- C & CP violation (SM-Quark CKM mixing)
 - 3- Departure from Equilibrium (SM-at EW phase transition) *Limitations of SM:*
 - 2)Not Enough CP violation & 3) $\rightarrow M_{Higgs}$ <40 GeV ,LEP Bound M_{Higgs} >114.4 GeV
 - \rightarrow <u>Supersymmetry</u> with light scalar top, below the top mass: $m\tilde{t}_1 < mt$
- Dark Matter

The Supersymmetric Lightest particle (LSP), in the MSSM, the neutralino X_{1}^{0} is a candidate

However, the annihilation cross-section $s_a (X_{1}^0, X_1^0)$ too small

But for $m\tilde{t}_1 - m X_1^0 \sim 15-30$ GeV, there is co-annihilation between the \tilde{t}_1 and the $X_1^0 \rightarrow s_a (X_{1,1}^0, \tilde{t}_1) + s_a (X_{1,1}^0, X_1^0)$ consistent with dark matter.

 $e^+e^- \rightarrow \widetilde{t_1}\widetilde{t_1} \rightarrow \widetilde{c}\widetilde{\chi_0}\widetilde{c}\widetilde{\chi_0}$

A scan in the super-symmetry parameter space (hep-ph/0403224v2-2004) C. Balazs, M. Carena, C. Wagner) Baryogenesis \rightarrow (mt̃1 <mtop && mt̃1 > 120 GeV) ;Higgs involved in the symmetry breaking mechanism mHiggs = 114.4 GeV \rightarrow Our points mt̃₁=122.5 GeV; mX₀¹=107.2 GeV ; Δ m=15.3 GeV

Events Final State :

Stop Hadronization → the final state jets smeared : due to Radiation + Fragmentation
Soft Multi-jets in the final state
Stop Hadronization → the final state jets smeared : due to gluon radiation + fragmentation
At ECM=260 GeV mostly 2 jets, carry the charm.
At ECM=500 GeV 2jets →2,3,4 jets (more energy available in the CM) →the Charm tagging (*T. Kuhl*) a <u>necessary tool</u> to identify the charm jets (Vertex bench-marking)
Analysis uses N-tuple tool incorporating jet finding algorithm (*T. Kuhl*) C. Milsténe

Simulation Characteristics

- Signal and Background generated with: Pythia (6.129)
 Simdet (4-0-3)– Circe(1.0)
 - Hadronisation and fragmentatrion of the \tilde{t} and the fragmentation of the c quark from the Lund string fragmentation Pythia uses Peterson fragmentation (*Peterson et al PR D27:105*)
 - The t̃ fragmentation is simulated using Torbjorn 's code //http://www.thep.lu.se/torbjorn/pythia/main73.f
 - The \tilde{t}_1 quark is set stable until after fragmentation where it is Allowed to decay again as described in (*Kraan, EPJ C37:91*)
 - The stop fragmentation parameter is set relative to the bottom fragmentation Parameter, $\tilde{e}=e_b*mb2/mt^2$; $e_b=-0.0050+/-0.0015$ following (OPAL,EPJ C6:225)
 - Newer:
 - e_b=-0.0031+ /- 0.0006-ALEPH-phys.lett B152,30(2001)
 - e_b=-0.0041+ /- 0.0004(OPAL)-Eu.Phys.J,C29,463(2003)
 - Variation in e_b was too big by a factor 4, it will be corrected for in the systematics
- Signal and Background are generated in each channel for the given luminosity in conjunction to the cross-sections

The cross-sections

Process	s[pb] at ECM=260GeV			s[pb] at ECM=500GeV		
P(e-)/ P(e+)	0/0	-80%/+60%	+80%/-60%	0/0	-80%/+60%	+80%/-60%
$\tilde{t}_1 \tilde{t}_1^*$	0.032	0.017	0.077	0.118	0.072	0.276
WW	16.9	48.6	1.77	8.6	24.5	0.77
ZZ	1.12	2.28	0.99	0.49	1.02	0.44
Wenu	1.73	3.04	0.50	6.14	10.6	1.82
eeZ	5.1	6.0	4.3	7.5	8.5	6.2
qq, qq ≠ tt	49.5	92.7	53.1	13.1	25.4	14.9
tt	0.0	0.0	0.0	0.55	1.13	0.50
2γ (p _t > 5 GeV)	786			936		

Table 1

A. Freitas et al EPJ C21(2001)361, EPJ C34(2004)487 and GRACE and COMPHEP -Next to leading order, assuming a stop mixing angle (0.01)

C. Milsténe

Pre-Selection Cuts

- A short list of the sequential cuts applied as a pre-selection first, allowed larger samples to be produced
- The pre-selection cuts are the same at the 500 and 260 GeV unless listed in parenthesis for 500 GeV

Pre-selection: 260GeV ;(500 GeV)

- 4<Number of Charged tracks<50
- Pt> 5 GeV
- $\cos\theta_{\text{Thrust}} < 0.8$
- |P_I/P_{tot}|<0.9
- E_{vis} < 0.40 ECM; (E_{vis} < 0.76 ECM)
- M(inv)<200 GeV

The cuts were refined further at Selection as shown next

Selection Cuts at E_{CM} =260, 500 GeV

Variable	ECM	ECM
	260 GeV	500 GeV
Number of jets	N _{jets} = 2	N _{jets} = 2 & E _n <25 GeV
		n=3,4
Number of charged tracks	$5 = N_{tracks} = 25$	$5 = N_{tracks} = 20$
Transverse Momentum p _t	15< p _t < 45 GeV	22< p _t < 50 GeV
Thrust T	0.77< T <0.97	0.55< T < 0.90
Longitudinal Momentum	p _L / p _{tot} < 0.85	p _L /p _{tot} < 0.85
Visible Energy E _{vis}	0.1< E _{vis} /ECM <0.3	0.1< E _{vis} /ECM <0.3
Acoplanarity F acop	cos(acop) < 0.9	cos(acop) < 0.9
Invariant mass of jet pair m _{jj}	m _{jj} ² < 5500 GeV ² or	m _{jj} ² < 5500 GeV ² or
	m _{jj} ² > 8000GeV ²	m _{jj} ² > 10000GeV ²
Charm tagging likelihood P_c	P _c > 0.6	P _c > 0.6
Signal Efficiency	0.340	0.212

Table 2

In order to optimize the cancellation of the systematics we aim to have a selection as similar as possible at the two energies. (cancellation in $Y=(N_{th}-B_{th})/(N_{pk}-B_{pk}))$ The two-photons background did require a 5GeV p_t pre-selection cut.

Events Generated and After Sequential cuts

	L=50fb ⁻¹ at ECM=260GeV		L= 500fb ⁻¹ at ECM=500GeV			
P (e-)/ P(e+)	Generated	0/0	+80%/-60%	Generated	0/0	+80%/-60%
$\tilde{t}_1 \tilde{t}_1^*$	50000	543	1309	50000	12514	29270
WW	180000	38	4	210000	91	8
ZZ	30000	8	7	30000	90	81
Wenu	210000	208	60	210000	18540	5495
eeZ	210000	2	2	210000	<18	<15
qq, q≠t	350000	42	45	350000	37	43
tt	-	0	0	180000	18	17
2-Photons	1.6 10 ⁶	53	53	8.5x10 ⁶	31	31
Total backgrd	-	<u>351</u>	<u>171</u>	-	<u>18807</u>	<u>5781</u>
<u>S/B</u>		1.5	7.6		0.7	5.2

0/0 polarization beam \rightarrow Unambiguous discovery +80%/-60% polarization \rightarrow Precision Measurement Remark: \tilde{t}_1 fragmentation \rightarrow the separation from the Wenu more difficult (we had 5044 Wenu at 0/0 polarization) C. Milsténe 12

Stop/wenu- Variables Distributions

Left column: Stop Right column: wenu (main Bg)

C. Milsténe

Charm-tagging

-The charm tagging provides A good cut between signal And wenu background -It has been used here as a tool to find the charm jets in The multi-jet event

Iterative Discriminant Analysis (IDA)

- A NN approach was also used the Iterative Discriminant Analysis (IDA). (modified Fisher Disc. Analysis)
- IDA combines the kinematic variables in parallel. The same kinematical variables we used in the cut based analysis. A non linear discriminant function followed by iterations are enhancing the separation between signal and background.
- Both the signal and background have been divided in two equally sized samples, one sample is used for training, the other as data.
- Two IDA steps have been performed, with a cut after the 1st IDA iteration keeping 99% of the signal efficiency while cutting part of the Bg.
- The performance is shown in the two next figures at 260 and 500 GeV.

Invariant Mass Di-Jets 1 Step Before Final IDA

IDA Performance

C. Milsténe

Systematic Uncertainty in Kinematics Cuts Variables

Variables	Error on Variable	Relative shift On signal eff vs = 260 GeV	Relative shift On signal eff vs = 500 GeV	Error on Y
energy scale	1%	3.7% (3.4%)	3.1% (1.3%)	<1% (2.1%)
N _{tracks}	0.5%	Negligible	Negligible	
Charm tagging	0.5%			
Luminosity	-	0.4%	0.2%	0.4%
Charm frag	0.011	0.3% (0.1%)	0.8% (0.6%)	<1%
Stop frag.	0.0015	2.4% (1.2%)	1.0% (3.5%)	2.7% (2.8%)
Background est.		0.8%	0.1%	<1%

All cuts are applied to hadronic and jet observables \rightarrow Calibration quantities are jet energy scale & jet angle.

Based on LEP, we assume 1% energy scale, 1 deg for jet angle Effect on signal efficiency: Partial cancellation between 260 and 500 GeV We assume cancellation in total luminosity in Y between 260&500GeV In parenthesis IDA's values if different

Effect of Stop and Charm Fragmentation

Comparison of the signal generated with and without gluon radiation \rightarrow The signal efficiency changes due to jet number cut is 2.5% \rightarrow We assume an error of 1% for the number of jets Charm fragmentation parameters assumed as precise as for LEP/OPAL →e_c =-0.0031±0.0011 Stop fragmentation is set relative to bottom fragmentation, $e_{\tilde{t}1} = e_b (m_b/m_t)^2$ $e_{\tilde{t}1} = -0.0050 \pm 0.0015$ de_c = \pm 35% \rightarrow Error dY=0.2% (from new papers of OPAL and ALEPH) $de_{\tilde{t}_1}=\pm 30\% \rightarrow Error dY=2.4\%$ however Newer analysis from ALEPH and OPAL provide e_b=-0.0031+ /- 0.0006-ALEPH-phys.lett B152,30(2001) e_b=-0.0041+ /- 0.0004(OPAL)-Eu.Phys.J,C29,463(2003) We assume an improvement of a factor ~4 in precision as a consequence we assume that the contribution of the stop fragmentation \rightarrow Error dY~0.7%

 \rightarrow contribute an error O(few%)

Theoretical Uncertainties

- Precise cross-section calculations are needed
- t1 production receives large corrections from QCD gluon exchange Between the final state t1 (bigger @Threshold) → Coulomb corr.
- NLO- QCD corrections ~100% @threshold down to 10% at high energies are included here
- NNLO-QCD corrections are expected of to be same order than NLO based on the results for the top quark. The missing higher order correction ~7% @260GeV, 2.5% @500 GeV
- It is expected that theoretical uncertainties can be brought down by a factor 2
- Here we assume an uncertainty of 3.5% @260GeV and 1% @500 GeV
- The EW corrections : NLO ~several %, the NNLO ~1%
- Combined $\rightarrow \sim 4\%$ @260 GeV and 1.5% @500GeV \rightarrow dY=5.5%

Combined Statistical and Systematic Errors

Error source for Y	Sequential Cuts	IDA- method
Statistical	3.1% (0.19 GeV)	2.7%(0.17 GeV)
Detector effects(syst.)	0.6%	2.1%
Charm fragmentation(syst.)	0.5%	0.5%
Stop fragmentation(syst.)	0.7%	0.7%
Background contr (syst.)	0.8%	0.1%
Sum Exp systematics	1.3%(0.08 GeV)	3.6%(0.14 GeV)
Sum of experimental errors	3.3% (0.20GeV)	3.5% (0.22 GeV)
Theory for Signal s	5.5%	5.5%
Total error dY	6.4%(0.40 GeV)	6.5%(0.41 GeV)

Results

Combining the statistical and systematic errors Table 6(*)

dY=6.4% \rightarrow dm_{$\tilde{t}1$} ~0.40 GeV – a factor 3 better (*Phys. rev. D* 72,115008(2005)

(dominated by the theory, expected to improve for signal and background)

dY=3.3% \rightarrow dm_{$\tilde{t}1$}~ 0.20 GeV (cut based experimental errors alone)

dY=3.5% \rightarrow dm_{$\tilde{t}1$} ~ 0.22 GeV (experimental errors alone& IDA)

→ Improvements in dark matter relic density due to improvement in dm $_{\tilde{t}1}$ is shown in the next figure.

Other limiting factors start to interplay, e.g. the precision on the neutralino mass $dm_{\chi_1}^0 \sim 0.3 \text{ GeV}$, (hep-ph/0608255, M.Carena, A.Freitas)

Dark Matter Relic Abundance=f (m $_{\tilde{t}1}$)

 $\begin{array}{lll} dm_{\tilde{t}1} = 0.40 \ GeV \buildred O_{CDM} \ h^{\,2} = \ 0.109 + 0.0013 - 0.012 & Exp. \ Err. + \ Th. \ Err. \\ dm_{\tilde{t}1} = 0.20 \ GeV \buildred O_{CDM} \ h^{\,2} = \ 0.109 + 0.0010 - 0.0007 & Exp. \ Err. \ Seq. \ cuts \\ dm_{\tilde{t}1} = 0.22 \ GeV \buildred OCDM \ h^{2} = \ 0.109 + 0.0010 - 0.0008 & Exp. \ Err. \ Seq. \ cuts \\ WMAP: \ OCDM \ h^{\,2} = \ 0.1106 + 0.0056 - 0.0075 \end{array}$

Conclusion

- More realistic data were produced including hadronization/fragmentation
- The precision, however, improved by a factor three on our previous analysis with $dm_{\tilde{t}1} = 0.40 \text{ GeV}$
- This method <u>could be applied to other particles</u> e.g. to measure the Higgs mass
- The method improves the precision to the mass determination in two ways a/ by reducing the systematics in Y- <u>cancellation</u> between the two energy points.
 b/ by choosing the energy at threshold, Y extremely <u>sensitive to the mass</u>
- The polarization separates the right-handed signal \tilde{t}_1 from background.
- Due to hadronization and fragmentation the <u>c-tagging</u> was a <u>necessary tool</u> to identify the charm jets at E_{CM}=500 GeV (benchmark for the vertex detector)
- IDA and the sequentiel cuts give almost identical results. IDA gives better statistical uncertainties but worse systematics dm $_{\tilde{t}1}$ = 0.20 GeV (0.22 GeV-IDA)
- Progress in the theoretical calculations is expected and partly accounted for
- With that precision we become limited by other factors.
- With this mass precision, the calculated relic density is in accordance with WMAP and SLOAN,

dm $_{\tilde{t}1}$ = 0.20 GeV→OCDM h2 = 0.109+0.0010-0.007 WMAP: OCDM h² = 0.1106+0.0056@.00155éne

Backup slides

A Sample Parameter Point

- $m_{\tilde{U}3}^2 = -99^2 \, GeV^2$
- A_t = -1100 GeV
- M₁ = 112.6 GeV
- M₂ = 225 GeV
- $|\mu|^{-}$ = 225 GeV
- Fµ = 0.2
- tan ß= 5

```
<u>Which gives:</u>

m\tilde{t}_1 = 122.5 \text{ GeV}; m\tilde{t}_2 = 4333 \text{ GeV};

m\tilde{x}_1^0 = 107.2 \text{ GeV}; m\tilde{x}_1^+ = 162.7 \text{ GeV}; m\tilde{x}_2^0 = 170.8 \text{ GeV}

m\tilde{x}_3^0 = 231.0 \text{ GeV}; m\tilde{x}_2^+ = 170.8 \text{ GeV}

\cos\theta \tilde{t} = 0.010 \sim \tilde{t} \text{ right-handed}

→ \Delta m = 15.2 \text{ GeV}
```

Events Generated and After IDA Selection

	L=50fb ⁻¹ at ECM=260GeV		L= 500fb ⁻¹ at ECM=500GeV		
P (e-)/ P(e+)	0/0	+80%/-60%	0/0	+80%/-60%	
$\tilde{t}_1 \tilde{t}_1^*$	618	1489	24538	57394	
WW	11	1	<20	<2	
ZZ	<2	<2	51	46	
Wenu	68	20	4262	1263	
eeZ	3	2	<18	<15	
qq, q≠t	16	17	45	52	
tt	0	0	3	3	
2-Photons	<25	<25	772	772	
Total background	<u>125</u>	<u> 67 </u>	<u>5133</u>	<u>2136</u>	
S/B	4.9	22	4.7	27	

The efficiencies improves from 34% ,21.2% cut based \rightarrow 38.7% ,41.6% IDA, while the background is of the same order of magnitude.

Stop Discovery Reach Snowmass 2005

Fig 4a-<u>Luminosity: 500 fb⁻¹</u> E_{cm}=500 GeV From Simulations: strong green region:

$$e^+e^- \rightarrow \widetilde{t_1}\overline{\widetilde{t_1}} \rightarrow c\widetilde{\chi}_0^1 \overline{c}\widetilde{\chi}_0^1$$

And Significance: (S/v(S+B)) > 5 Background B Signal S=es L For e, Signal efficiency For s, Theoretical cross-section <u>dark gray region</u>: Consistent with DM And Baryogenesis

Background- Channels @500 GeV

Z Phys. C 76 (1997) 549- A.Bartl, H. Eberl, S. Kraml, W.Majerotto, W.Porod, A. Sopczak

C. Milsténe

C-Tagging — The Data Samples

<u>Neural Network (NN):</u>

data used: 255000 stops, Mstop=120-220; Dm=5,10, 20 GeV

240000 Wev, the most resilient background

C-tagging-Neural Network Input

•<u>Vertex Case 1</u>:NN Input variables

- *Impact parameter* significance (impact parameter/error) of the 2 most significant tracks in the r-F plane (highest separation power) && their Impact parameters.

- The impact parameter significance & Impact parameters of the 2 tracks in z

- Their momenta
- The joint probability in r- F (tiny beamspot size in that plane)& z
- •Vertex Case 2: NN Input variables (all of Case 1+below)
 - Decay Length significance of the secondary vertex && Decay Length
 - Momentum of all tracks associated to the secondary vertex && Multiplicity

- Pt corrected mass of secondary vertex (corrected for neutral hadrons), the pt of the decay products perpendicular to the flight direction (between primary && secondary Vertex) && joint probability in r-F and z

•<u>Vertex Case 3</u>: 2 secondary vertices, the tracks are assigned to the vertex closest to the primary vertex and the NN input variables are those of case 2 C. Milsténe

Systematic Uncertainty in Kinematics Cuts Variables

	Error on	
Variable	variable	Error on Y
p _t	2%	0.28%
cosθ _{Thrust}	1.8%	0.18%
E _{vis}	2%	0
F _{acop}	1%	0.08%
m _{jj}	4%	0.61%

Table 5

•All cuts are applied to hadronic and jet observables → Calibration quantities are jet energy scale & jet angle.

Based on LEP, we assume 2% calibration error for jets, 1 deg for jet angle
Effect on signal efficiency: Partial cancellation between 260 and 500 GeV
We assume cancellation in total luminosity in Y between 260&500GeV

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.