

Current status of simulations in VXD and Si Tracker

D. Barbareschi

FNAL, November, 16th 2007

Working on geometry

- ilc
- many geometry files available in CVS repository in .gdml and .root format
 - VXD geometry file based on sidmay06
 - SiTracker geometry file based on sid01_polyhedra
 - + sid01 for the support materials from SiD concept
 - a modified geomconverter tool, implemented in slic framework, used to just select SiTracker geometry from compact.xml
 - .xml -> .lcdd -> .gdml -> .C -> .root
 - different conventions between IlcRoot (cm, degrees, ...) and slic (mm, radiant, ...)

Working on geometry(2)

VXD:

- 5 pixel barrels
- 4+4 pixel endcaps

ilc

Working on geometry(3)

layer	ladders
1	12
2	12
3	18
4	24
5	30

endcap	sectors
1	12
2	12
3	12
4	12

Working on geometry(4)

SiTracker:

- 5 single-sided strip barrels
- 4+4 double-sided strip endcaps
- 3+3 double-sided forward tracker disks

Working on geometry(5)

SiTracker endcaps

SiTracker barrels

layer	tiles along phi	tiles along z
1	16	7
2	36	15
3	54	23
4	72	29
5	90	37

endcap	Radial sections	Azimuthal sectors
1	7	12
2	10	12
3	13	12
4	16	12
5	3	12
6	2	12
7	1	12

Working on geometry(6)

Working on geometry(7)

Hits production

- ilc
- Hits information for VXD and SiTracker are calculated and stored into a .root file by StepManager method
- Introduced hits efficiency
 - 99.5% for pixels
 - 99.9% for strips
 - currently hits data are stored in VXD.Hits.root
 - layer number, ladder number, detector number
 - x, y, z global coordinates
 - charge deposition

Hits production(2)

Event display shows hits for a ttbar->6jets event (5 Tesla)

Segmentation

- Segmentation in pixel for VXD layers of the barrel and endcaps and strips for SiTracker layers of the barrel and endcaps:
- VXD
 - possibility to set the pixel dimensions for each layer in the config file (20 μm by default)
- SiTracker
 - possibility to set the strip pitch for each layer in the config file (25 μm pitch strips by default with readout every other strip)

Pixel Digitization

SDigitization

Expert check

parameters

- for each track crossing the silicon:
 - the segment is divided in steps
 - for each step is calculated the projection along pixel rows and columns
- severals pixels are fired by diffusion effect
 - the charge spread due to diffusion is calculated with following parameters:

Bvoltage=100 Volts T=300° K

Eccentricity=85% (asymmetric spreading)

coupling effect taken into account (row probability=0.0, column probability=0.0)

Pixel Digitization(2)

- Digitization
 - In this step electronic noise is added to signals (noise=0)
 - cut off on the threshold for zero suppression (threshold=0)

Strip Digitization

SDigitization

- for each track crossing the silicon:
 - the segment is divided in steps of 25 μm
 - for each step is calculated the strip number
- severals strips are fired by diffusion effect
 - diffusion constant for electrons set to 150 cm²/s
 - diffusion constant for holes set to 300 cm²/s
 - drift velocity for electrons set to 1.65E+06 cm/s
 - drift velocity for holes set to 2.3E+06 cm/s

Strip Digitization(2)

Digitization

- the electronic noise is added to signal, noise is gaussian (sigma=3.33 ADC count, 1 ADC unit = 2.16 KeV, S/N = 20)
- the threshold for zero suppression is set to 3*sigma noise

Clusterization

- Pixel Cluster Finding
 - Create a initial cluster from adiacent pixels (no for diagonal)
 - Subdivide the previous cluster in smaller NxN clusters (default 25x25 cluster range)
 - Kalman filter picks up the best clusters

Clusterization(2)

- Strip Cluster Finding
 - Calculate the crossing points from P side strips and N side strips (stereo angle = 17.5 milliradiant)
 - Take into account the possibility to have: 1:1, 1:N
 (ghost clusters) and N:M (ghost clusters) strips

VXD space resolution

VXD barrel

Y coordinate

VXD barrel
Z coordinate

D. Barbareschi FNAL, November, 16th 2007

VXD space resolution

VXD endcap

Y coordinate

VXD endcap Z coordinate

SiT space resolution

SiT endcap

Y coordinate (same for barrel apart the stereo angle)

SiT endcap
Z coordinate

Background simulation

- ilc
- IlcRoot has an interface to read Guinea Pig file format
- Guinea Pig file is a txt file containing the following fields
 - event number
 - particles number (e+ e-)
 - particles energy (positive value: electron, negative value: positron)
 - velocity in x, y, and z directions divided by the speed of the light
 - x,y and z vertex position in nanometers
- for this studies, incoherent pairs are simulated with acc.dat (accellerator parameters) set by Adrian Vogel
- background is merged with Physics events during
 Digitization step

Background simulation(2)

 acc.dat contains following parameter for beam background simulation:

accelerator parameters

```
energy = 250;
espread = 0.003;
which_espread = 0;
particles = 2.0;
f_rep = 5;
charge_sign = -1;
emitt_x = 10;
emitt_y = 0.040;
beta_x = 21;
beta_y = 0.4;
sigma_x = 655;
sigma_y = 5.7;
```

pairs parameters

```
n_x = 64;

n_y = 64;

n_z = 36;

n_m = 200000;

cut_x = 6.0 * sigma_x.1;

cut_y = 6.0 * sigma_y.1;

cut_z = 3.0 * sigma_z.1;

pair_ecut = 5e-3;
```

For further details see Guinea Pig manual:

http://dschulte.web.cern.ch/dschulte/gp.html

Cluster occupancy in VXD + SiT

Cluster occupancy in VXD + SiT

Cluster occupancy in VXD + SiT

Conclusion

- all digitization/clusterization machinery is in place for pixel and strip detector
- parameters need to be set according to the technology to be simulated

- I enjoyed to stay at Fermilab in these 5 months
- thanks to Hans for his help during geometry design (also for hosting in his office in the first month)
- thanks to G.P. and Marcel for all other stuff

