Analysis Tools and GLD prime performance

ILD Workshop @ DESY, Zeuthen Jan 15th, 2008

Tamaki Yoshioka ICEPP, Univ. of Tokyo

Introduction

Optimization Strategy:

- Aim to parameterize physics performance vs. Detector parameters (R_TPC, B, etc...).
- Studies should be as realistic as possible:
 - Study signal + background Monte Calro
- Use full detector simulation and reconstruction
 - → the tools exist for both LDC and GLD
- Currently LDC and GLD use different Geant4 simulation/reconstruction frameworks.
- Given LoI timescale, decided to perform ILD detector studies in context of both GLD and LDC.
 - → Connected only by common data format (LCIO).

• An interface which converts Jupiter output to LCIO format has been successfully implemented.

Performance of single particles and $Z \rightarrow qqbar$ events were checked by using the MarlinReco and PandoraPFA.

Performance Check

- Analyzed Jupiter LCIO data by MarlinReco/PandoraPFA.
 - Single gamma : ECAL resolution
 - Single Kaon0L : HCAL resolution
 - Z-pole : PFA performance

Note: These studies based on Pandora v01, not the latest version.

- Detector Model
 - GLD baseline and GLD prime.
 - Same generation event. Can perform event-by-event consistency check.
- Physics list: LCPhysicsList

Single Gamma - Resolution

- Analyzed same Jupiter single-gamma events by MarlinReco.
- Resolutions of GLD baseline and GLD prime are consistent.

Single Kaon0L - Resolution

- Analyzed same Jupiter single kaon0L events by MarlinReco.
- Resolutions of GLD baseline and GLD prime are consistent.
- Resolutions are significantly worse than previous results (~45%)

TLD WOLKSHOP & Lemmen

Z-pole Events

- Analyzed same Jupiter
 Z-pole events by
 MarlinReco/PandoraPFA.
- Resolutions of GLD baseline and GLD prime are consistent.
- Consistency check of event-by-event basis is also performed.

Consistency Check

- Width of total energy difference is consistent with energy resolution.

Analysis Strategy

- A lot of physics studies are expected for the optimization study.
 - Development of analysis code is time-consuming job especially for those who have no experience to use our software tools so far.
 - On the other hand, we have a lot of analysis codes (physsim) for QuickSim study developed at the JLC/GLD era.

Analysis Strategy

• An interface which converts MarlinReco output has been successfully implemented.

Physsim Package

- Physsim Package for full simulation
 - Analysis codes
 - ZH \rightarrow 11X
 - ZH \rightarrow 2jets, 4jets
 - sfermion pair
 - chargino pair
 - ttbar
 - ZHH (now on-goin)
 - ttH (now on-going)
 - ...
 - Novice user can start physics analysis by using information of a PFO class.
- → Some preliminary results are shown tomorrow.

Summary

- LCIO interface has been implemented.
 - → Can directly compare Jupiter with Mokka.
- Physsim interface has been implemented.
 - → Analysis codes are in hand.
 - → Analysis path is established.
 (Jupiter → MarlinReco/PandoraPFA → Physsim)
- Performance of single gamma, single kaon0L and Z-pole are checked, and found to be consistent between GLD baseline and GLD prim.
- Next step:
 - Try the latest MarlinReco/PandoraPFA.
 - Try high energy jets
 - Try LDC like detector model (data already exist)

Backup

Single Gamma - Linearity

- Analyzed same Jupiter single-gamma events by MarlinReco.
- Resolutions of GLD baseline and GLD prime are consistent.

Single Kaon0L - Linearity

- Analyzed same Jupiter single kaon0L events by MarlinReco.
- Resolutions of GLD baseline and GLD prime are consistent.
- Resolutions are significantly worse than previous results (~45%)

Consistency Check - Hits

Consistency Check - Hits

Consistency Check - PFOs

Consistency Check - PFOs

Common Parameters

			GLD	LDC	GLD'	LDC'
TPC		Rin (m)	0.45	0.3	0.45	0.3
		Rout (m)	2.0	1.58	1.8	1.8
		Zmax (m)*	2.5	2.16	2.35	2.35
Barrel	ECAL	Rin (m)**	2.1	1.6	1.85	1.82
		Material	Sci/W	Si-W	Sci/W	Si-W
	HCAL	Material	Sci/W	Sci/Fe	Sci/W	Sci/Fe
EndCap	ECAL	Zmin (m)***	2.8	2.3	2.55	2.55
B-Field (T)			3	4	3.5	3.5
VTX		Inner Layer (mm)	20	16	18	18

- Region between VTX and TPC unchanged in both cases.
- * Note for GLD Zmax = 2.3 + 0.2 m for TPC readout. This is included in the standard LDC TPC Zmax
- ** LDC allows less space between TPC and ECAL than GLD here let TPC outer radius fix ECAL Rin and all subsequent radii
- *** propose to fix ECAL Zmin and let this define the exact details of the TPC endplate region.