

İİĻ

Valeri Saveliev (OSU) Aurore Savoy-Navarro (LPNHE) Marcel Vos (IFIC) on behalf SiLC Collaboration



# **Main Topics**

Physics Motivation and Detector requirements

- Comparison of Silicon tracking LDC and GLD concepts: differences & similarities
- Main Silicon tracking components: their role & Technological choices and issues
- Optimization: Tools, present results and issues
- Integration: issues, present proposed solutions



# Physics Requirements & Tracking requirements

Challenge: to build highly performing tracking system for precise measurements (space/momentum), full coverage (including endcap and forward/MDI connection), with minimal %X0, in complicated environment, examples:





# General Detector Requirements from Physics

• Vertexing: 1/5 r<sub>beampipe</sub>, 1/30 pixel size (wrt LHC) : b,c tags ...

$$\sigma_{ip} = 5\mu m \oplus 10\mu m / p \sin^{3/2} \theta$$

- Tracking: 1/6 material, 1/10 resolution (wrt LEP) : tagged Higgs ...  $\sigma(1/p) = 5 \times 10^{-5}/\text{GeV}$
- Jet energy (quark reconstruction): 1/2 resolution (wrt LEP) : W,Z separation...

$$\sigma_E / E = 0.3 / \sqrt{E(\text{GeV})}$$

• Hermicity down to:

$$\theta = 5mrad$$

• Sufficient timing resolution to separate events from different bunch-crossings



# General Tracking Requirements

- Main momentum resolution requirements for central region driven by precision Higgs study, in particular reconstruction of Z mass in Zh channel, threshold scan Goal : ΔM( μμ) < 0.1xΓ(Z°), σ(1/p)< 10<sup>-4</sup>Gev/c<sup>-1</sup>
- But many processes are peaked in the forward region: Bhabha scattering, W-pair production, fermion pair production has highest sensitivity to forward-backward asymmetry, Z' effects of extra dimensions and many others...
- Full angular coverage and contribution to the PFA where excellent tracking is also part of the game

Tracking requirements are very demanding (e.g.10 x higher in momentum wrt LEP as well as in spatial and full coverage)

Excellent and robust solution is by combining a powerful vertex detector, with a central large TPC together with a Silicon tracking system, each with excellent tracking efficiency 98%



# Comparison Si tracking systems LDC/GLD

LDC, GLD Concepts





## Si Tracking in LDC/GLD

LDC Silicon system:

Silicon teams from LDC and GLD are participating in the SiLC R&D Collaboration.

As a result, the Silicon tracking systems in both concepts have evolved jointly; the only main difference is SIT vs IT

July 18, 2007, Yasuhiro Sugimoto, KEK

| Sub-detector     | GLD                                | LDC                         |
|------------------|------------------------------------|-----------------------------|
| Vertex det.      | FP CCD                             | CPCCD/CMOS/DEPFET/ISIS/SOI/ |
| Si inner tracker | Si strip ( <mark>4-layers</mark> ) | Si strip (2-layers)         |
| Si forward trk.  | Si strip/pixel (?)                 | Si strip/pixel (?)          |
| Main trk.        | TPC                                | TPC                         |
| Additional trk.  | Si endcap/ outer trk. (option)     | Si endcap/ external trk.    |



Valeri Saveliev (OSU) Aurore Savoy-Navarro (LPNHE) Marcel Vos (IFIC)



### **GLD/LDC Si Tracking**

#### LDC/LDC main Si trackers parameters:

|     | R (cm)     | Z(cm) | cosθ          | t (µm) | Resolution                                                   |     | R (cm)     | Z(cm) | cosθ          | t (µm) | Resolution                   |
|-----|------------|-------|---------------|--------|--------------------------------------------------------------|-----|------------|-------|---------------|--------|------------------------------|
| SIT | 16.0       | 38.0  | 0.9216        | tbd    | R-φ:<br>25-50μm strip<br>σ=4μm<br>Ζ:<br>50μm strip<br>σ=25μm | BIT | 9.0        | 18.5  | 0.8992        | 500    | R-φ:<br>50μm strip<br>σ=10μm |
|     | 27.0 66.   |       |               |        |                                                              |     | 16.0       | 33.0  | 0.8998        |        |                              |
|     |            | 66.0  | 0.9255        |        |                                                              |     | 23.0       | 47.5  | 0.9000        | 560    | Z:                           |
|     |            |       |               |        |                                                              |     | 30.0       | 62.0  | 0.9002        |        | σ=50μm                       |
|     | 2.9-14.0   | 22.0  | 0.8437-0.9914 |        |                                                              |     | 2.4-7.6    | 15.5  | 0.8979-0.9882 |        |                              |
|     | 3.2-14.0   | 35.0  | 0.9285-0.9958 |        |                                                              |     | 3.2-14.0   | 29.0  | 0.9006-0.9940 |        |                              |
|     | 3.5-21.0   | 50.0  | 0.9220-0.9976 | thd    | σ=7um                                                        |     | 3.7-21.0   | 43.5  | 0.9006-0.9964 |        |                              |
| FTD | 5.1-27.0   | 85.0  | 0.9531-0.9982 | tou    | o rpin                                                       | FIT | 4.7-28.0   | 58.0  | 0.9006-0.9967 | 560    | σ=25μm                       |
|     | 7.2-29.0   | 120.0 | 0.9720-0.9982 |        |                                                              |     | 5.7-38.0   | 72.5  | 0.8857-0.9969 |        |                              |
|     | 9.3-29.0   | 155.0 | 0.9829-0.9982 |        |                                                              |     | 6.6-38.0   | 87.0  | 0.9164-0.9971 |        |                              |
|     | 11.3-29.0  | 190.0 | 0.9886-0.9982 |        |                                                              |     | 7.6-38.0   | 101.5 | 0.9365-0.9972 |        |                              |
| ETD | 30.5-149.0 | 236.8 | 0.8464-0.9918 | tbd    | σ=7µm                                                        |     |            | 270.0 | 0.7964-0.9864 |        |                              |
| SET | 160.0      | 250.0 | 0.8423        |        |                                                              | ET  | 45.0-205.0 | 274.0 | 0.8007-0.9868 | 560    | σ=25μm                       |
|     |            |       |               |        |                                                              |     |            | 278.0 | 0.8048-0.9872 |        |                              |





LDC: Silicon Tracking Matrix







Inner components: SIT/IT: link VTX & TPC improve the momentum resolution FTD/FIT: extend/replace VTX & TPC at low angles (FWD)

≻Outer components:

SET: link TPC to em calo and helps in PFA ETD/ET: same in the endcap region

Moreover these 4 components provide an almost full angular coverage (also standalone tracking => redundancy)

Lot of work and studies devoted to emphasize these roles.



# Ex: Si Tracking in LDC/GLD (Inner Part)





GLD





LDC

# Importance of the Inner central tracking (SIT/IT)

Challenge: to build high efficient detector system for precise measurements in complicated environment: Example of importance of SIT









Among the main goals: lowering %X0, improving S/N, spatial resolution (granularity) momentum resolution.

It translates into R&D work performed by SiLC R&D Collaboration on:

Sensors:

- Si-strip
- Pixel technologies (SiLC teams involved with MAPs & DEPFET R&D)
- New Sensors technologies (mainly driven by 3D on strips and pixels)

**Electronics**:

- DSM FEE
- direct connection to the Silicon sensor (strip or pixel)
- integration to the overall readout and DAQ

Integration Technologies: mechanical support and construction of elementary module (tile), cooling, connection of electronics to detector, cabling, alignement, mechanical integration of these components within the overall detector



## BaselineTechnologies of Si Sensors (SiLC)

#### Future Linear Collider Experiment will have a large number of silicon sensors

- Order of 100-200 m2 (CMS has 200 m2)
- Tradeoff between large scale, precision, material budget and power consumption are main direction

#### • SiLC baseline for outer layers

- 8", high resistivity FZ sensors
- Thickness: 200 µm
- AC coupled strips
- 50µm pitch
- Strip length between 10 and very maximum 60 cm

#### SilC baseline for inner layers

- double sided 6" high resistivity FZ sensors
- AC coupled strips
- 25-50µm pitch

#### • SiLC baseline for inner forward layers:

- Pixels



# Technologies developments on sensors: ex



# Technologies developments: DSM FE electronics



## Si strip Sensors R&D at GLD (Korean team)

GLD Korean Team Part of SiLC

DSSD Designed, Fabricated and Tested:

- IV/CV shows good quality sensor
- S/N shows that the sensors are in good shape
- more tests are in progress

#### Prototype

- will fabricate AC-SSD on 6-inch(400 mm) and 8-inch(500 mm) wafers



| wofor     | TOPSIL                                    | strip width     | 9µm               |  |
|-----------|-------------------------------------------|-----------------|-------------------|--|
| water     | (5inch, high resistivity, (100), FZ, DSP) | strip pitch     | <b>50(100)</b> μm |  |
| thickness | 380 μm                                    | readout pitch   | 50µm              |  |
| size      | 51 x 26 mm <sup>2</sup>                   | readout channel | 512(512)          |  |



# Optimization: Tools, present results & issues

Fast simulations: LiCToy and SGV ≻Full simulations GEANT4 based: MOKKA + Marlin Reco

> Jupiter (Korean team in GLD) ILCROOT (for comparison)

≻Test beams

Main goals:

- => Optimization of each component design in collaboration with each concerned subdetector(s)
- => Study of the large angle and FWD region (connection with MDI and VFWD)

=> Comparison with an all-Si-tracking design

SiLC has started a task force on full simulation/optimization since 07. It took responsablity in defining and maintaining the geometry DB (people in charge: V. Saveliev & M. Vos)



## Optimization Tools: Ex1 = LiC Toy

LiC Detector Toy, M. Regler, M. Valentan, R. Frühwirth, Vienna University: A mini simulation and track fit programme, written in MATLAB, for fast and flexible detector optimization study (see W. Mitaroff's presentation at TOOL session)



| RMS                  |             | $0 \leq \lambda \leq \pi/12$ | $\pi/12 \le \lambda \le \pi/6$ | $\pi/6 \le \lambda \le \pi/4$ |
|----------------------|-------------|------------------------------|--------------------------------|-------------------------------|
|                      | without IT  | 3.95 10-6                    | 3.99 10-6                      | 3.98 10-6                     |
| RΦ                   | with IT     | 3.90 10-6                    | 3.98 10-6                      | 4.33 10-6                     |
|                      | modified IT | 3.81 10-6                    | 3.87 10-6                      | 4.26 10-6                     |
| Z                    | without IT  | 4.35 10-6                    | 4.65 10-6                      | 4.88 10-6                     |
|                      | with IT     | 4.32 10-6                    | 4.02 10-6                      | 4.26 10-6                     |
|                      | modified IT | 4.27 10-6                    | 3.97 10-6                      | 4.12 10-6                     |
| θ                    | without IT  | 1.50 10-4                    | 1.46 10-4                      | 1.17 10-4                     |
|                      | with IT     | 1.19 10-4                    | 1.17 10-4                      | 1.00 10-4                     |
|                      | modified IT | 1.14 10-4                    | 1.15 10-4                      | 0.967 10-4                    |
| φ                    | without IT  | 1.14 10-4                    | 1.19 10-4                      | 1.27 10-4                     |
|                      | with IT     | 1.16 10-4                    | 1.21 10-4                      | 1.27 10-4                     |
|                      | modified IT | 1.10 10-4                    | 1.16 10-4                      | 1.22 10-4                     |
| $\Delta p_t/p_t$     | without IT  | 1.06 10-3                    | 1.08 10-3                      | 1.16 10-3                     |
|                      | with IT     | 1.05 10-3                    | 1.02 10-3                      | 1.05 10-3                     |
|                      | modified IT | 1.05 10-3                    | 1.03 10-3                      | 1.05 10-3                     |
| $\Delta p_t / p_t^2$ | without IT  | 1.02 10-4                    | 1.01 10-4                      | 1.14 10-4                     |
|                      | with IT     | 0.927 10 <sup>-4</sup>       | 0.921 10-4                     | 0.977 10-4                    |
|                      | modified IT | 0.942 10 <sup>-4</sup>       | 0.931 10-4                     | 0.998 10-4                    |





SGV studies have helped to define the optimal geometry of the the SET, and to show how the Silicon Envelope can ameliorate the momentum resolution for the LDC detector:





## **Optimization (SGV)**

Given the effect performance curves wrt. Angle and momentum, it is interesting to try to see what the ultimate performance for a given geometry would be. With SGV, it is easy to change the material, and even to completely remove it (but keeping the measurement...)





İİL

Track Fitting (Marcel Vos) : CMS Kalman filter tool-kit .

The result of years of work by a lot of people. Validated in large-scale MC productions.

Extracted all relevant code in a series of libraries with limited external dependencies (CLHEP, ROOT).

Interfaced to toy geometries in standalone programme. Tested results for internal consistency and against existing fast-simulation packages.

Interfaced to MarlinReco (GEAR geometry, LCIO hits)







### Momentum resolution

 $\Delta(1/p_T)$  @ 10 degrees : Reference (TESLA) set-up 1.8×10<sup>-3</sup> 1.3×10<sup>-2</sup>/ p<sub>T</sub> Challenging setup  $(5 \mu \text{ m R}\phi \text{ resolution}, 1.2 \% \text{ X0/disk for FTD1-3}, 4 \% \text{ X0/disk for FTD4-7})$  $\Delta(1/p_T) = 0.9 \times 10^{-3}$  0.8×10<sup>-2</sup>/ p<sub>T</sub>





FIC

# Tools: Pattern Recognition

Combinatorial algorithm based on KF kit

The baseline algorithm of the ATLAS (arXiv:0707:3071) and CMS (NIM A 559 143) experiments

Standalone FTD reconstruction implemented in MarlinReco processor

Run on tt events with superposed pair background. Reference FTD (TESLA layout) 10 mm R-f resolution 1.2 % X<sub>0</sub>/disk (1-3) and 0.8 % X<sub>0</sub>/disk (4-7). Several scenarios for R-resolution, from pixel to single-sided strip.





### Vertexing with Forward Tracking





ĨĨĻ



### **Tools: Pattern Recognition**

Innermost disks R very precise (pixel detectors) R f -> weakly constrained  $p_T$ 

İİĹ

 $\mathbf{x}_{\mathbf{o}}$ 





## Optimization

Full Detector Simulation and Reconstruction

- LDC: Mokka and Marlin Reconstruction OO Frame work
- GLD: Jupiter and jsf Root based Framework

#### PFA – Particle Flow Algorithm

IC

ΊĹ





**Necessary Joint Effort** 



## **Tools: Pattern Recognition**

#### Low momentum tracks are a real challenge!

The stand-alone FTD is able to resolve patterns down to a  $\ensuremath{p_{\text{T}}}$  of 100 MeV, provided:

R-segmentation: in innermost disks < 500 mm, in outermost disks O(1cm)

Read-out speed: beyond O(10) bunch crossings the density of low momentum tracks prevents algorithm convergence



Material: an increase of the material beyond 1%/disk has dramatic consequences on pattern recognition





# Optimization (Jupiter, Satellites, Uranus)

GLD Tracking Study:

• Jupiter, Satellites and Uranus – Geant4 and ROOT based full detector simulation Track reconstruction:

- Track Finder is a cheating version using MC truth
- Track Fitter is based on Kalman Filter



Can perform hybrid track fitting with TPC, IT,VTX, taking into account

- Energy loss,
- Multiple Scattering

A Study of Tracker Performance with Jupiter, A.Yamaguchi



## Optimization tools: testbeams, ex:

Test beam at CERN Oct 07: Combined Si strips with EUDET Telescope will be pursued in 08

ilr iit





LCTPC in 2008: test SIT/SET system around the TPC





### SiLC R&D Collaboration



Launched January 2002, Proposal to the PRC May 2003, Report Status May 2005, ILC tracking R&D Panel at BILCW07 February 2007, next PRC Status report April 08 The optimization of the Silicon tracking for ILD will be pursued within our ongoing Collaboration with Silicon tracking team als part of SiLC



## **Summary: Integration Issues**



