Single Photon Processes at the ILC Dark Matter, SUSY and The Optimal Detector

Christoph Bartels

Universität Hamburg/DESY

ILD Workshop Zeuthen January 16th '08

1

Outline

Single Photon Processes @ ILC SM Dark Matter SUSY

Optimisation of the Detector Concept

Optimisation Benchmarks Analysis

Progress in the last months

Monte Carlo Generators Event Weights Energy Resolution New Detector Model

Summary

Outline

Single Photon Processes @ ILC SM Dark Matter SUSY

Optimisation of the Detector Concept

Optimisation Benchmarks Analysis

Progress in the last months

Monte Carlo Generators Event Weights Energy Resolution New Detector Model

Summary

SM Single Photon Events

Single Photon and E

- ▶ SM $\nu \bar{\nu} \gamma$
- ► Single photon and *E*
- Cross section polarisation dependent

BSM Physics and Single Photon Events

Cosmological Dark Matter

Cosmological Dark Matter

- WMAP
- Cosmic Microwave Background
- ▶ 2.7 K
- Analysis of fluctuations

WMAP:
$$\Omega_{\rm DM} = (\mathbf{21}\pm\mathbf{2})\%$$

Favoured DM candidate: WIMPs

WIMPs and Single Photon Events

From Cosmology to ILC

- DM as thermal relic $n \sim e^{-m_{\chi}/kT}$
- ► Expansion of universe → 'freezeout'
- Crossing symmetry: relation between σ(χχ → e⁻e⁺) and σ(e⁻e⁺ → χχ)
- Emission of photon

WIMPs and Single Photon Events

From Cosmology to ILC

- DM as thermal relic $n \sim e^{-m_{\chi}/kT}$
- ► Expansion of universe → 'freezeout'
- Crossing symmetry: relation between σ(χχ → e⁻e⁺) and σ(e⁻e⁺ → χχ)
- Emission of photon

- Model independent
- Parameter: annihilation fraction to electrons κ_e

Radiative Neutralino Production and Beam Polarisation

SUSY:

- Extension to Standard model (SM)

Radiative neutralino production

- ► Only kinematicly allowed process, if other SUSY masses > √s/2
- Signal cross section in fb
- ▶ m_{\\chi_1^0} = 180 GeV

Radiative Neutralino Production and Beam Polarisation

SUSY:

- Extension to Standard model (SM)

Radiative neutralino production

- ► Only kinematicly allowed process, if other SUSY masses > √s/2
- Background cross section in fb

Radiative Neutralino Production and Beam Polarisation

SUSY:

- Extension to Standard model (SM)

Radiative neutralino production

► Only kinematicly allowed process, if other SUSY masses > √s/2

• Significance
$$\frac{N_{sig}}{\sqrt{N_{bg}+N_{sig}}}$$

► $\mathcal{L} = 500^{-1} \text{fb}$

Outline

Single Photon Processes @ ILC SM Dark Matter SUSY

Optimisation of the Detector Concept

Optimisation Benchmarks Analysis

Progress in the last months Monte Carlo Generators Event Weights Energy Resolution New Detector Model

Summary

C. Bartels

8

LDC'

Optimisation of The Detector Concept

Parameters

- Size of Time Projection Chamber
 ⇔ Size of Coil
- ► B-Field ⇔ innermost vertex layer
- Calorimeter cell size
 ⇔ cost
- Layout of forward region

LDC Optimisation with Single Photon Events

Optimisation Goals of this Anlaysis

Detector benchmarks

- ECAL resolution: $\frac{\Delta E}{E} = \frac{14.4\%}{\sqrt{E}}$
- Hermeticity
- ► Fake ∉ rejection (LumiCal)

Furthermore

Photon ID (PFlow)

LDC Optimisation with Single Photon Events

Optimisation Goals of this Anlaysis

Analysis benchmarks

Model independent

- Lowest visible κ_e
- WIMP mass resolution

Here: polarisation increases reach and resolution by \sim 6-10

SUSY

- ∫ Ldt for 5 σ observation of [~]χ⁰₁
- $\tilde{\chi}_1^0$ mass resolution

LCWS Hamburg 2007

DM Searches at the ILC

in Full Simulation of the LDC

From theory:

- Cosmology: WIMP cross section $\rightarrow \sigma_{sig}$
- SUSY: neutralino cross section $\rightarrow \sigma_{sig}$
- SM: $\nu \bar{\nu} \gamma$ background cross section $\rightarrow \sigma_{bg}$

Analysis procedure (status LCWS Valencia/Hamburg)

- ► SM $\nu \bar{\nu} \gamma$ sample ~ 500 fb⁻¹, $\mathcal{O}(10^6)$ events (NUNUGPV)
- Detector simulation (Mokka 6.1)
- Digitisation (MokkaCaloDigi)
- Reconstruction (Wolf) and selection
- Assign weights $\frac{\sigma_{sig}}{\sigma_{bg}}(E_{\gamma},\Theta_{\gamma})$
- Search :)

Benefit: one sample covers full parameter space

Outline

Single Photon Processes @ ILC SM Dark Matter SUSY

Optimisation of the Detector Concept

Optimisation Benchmarks Analysis

Progress in the last months

Monte Carlo Generators Event Weights Energy Resolution New Detector Model

Summary

Monte Carlo Generators and Cross Sections

Comparison between NUNUGPV, Whizard and LO Calculation, $\frac{d\sigma}{dxd\cos\Theta}$ [pb] with $x = \frac{2E_{\gamma}}{\sqrt{s}}$

Cross section

Relative differences

- Up to 80% deviations in some regions of phase space, discussion with authors
- Use whizard for event generation
- LO calculation for weight evaluation

C. Bartels

Event Weights $\frac{\sigma_{sig}}{\sigma_{bg}}(E_{\gamma}, \Theta_{\gamma})$ with LO Calculation

- σ_{bg} created from event sample
- Fluctuations in signal distribution

- σ_{bg} from exact LO cross section calculation
- Weights smoothed

15

Energy Resolution

Tests with Single Particle Gun

- Aim for energy resolution $\frac{\Delta E}{E} = \frac{14.4\%}{\sqrt{E}}$ (LDC01)
- Test with particle gun
- ▶ 20 < E_{γ} < 240 GeV at 90°
- Resolution at $\frac{\Delta E}{E} = \frac{14.9\%}{\sqrt{E}}$
- Calibration of simulation for MC events
- Full calorimetric energy
- Try with Photon ID next

$LDC01Sc \rightarrow LDC01_05Sc$

- Under construction
- New default
- Missing endcap

$LDC01Sc \rightarrow LDC01_05Sc$

- Under construction
- New default
- Missing endcap
- Solved

$LDC01Sc \rightarrow LDC01_05Sc$

- Under construction
- New default
- Missing endcap
- Solved

- HCAL barrel ring
- Will change?

Outline

Single Photon Processes @ ILC SM Dark Matter SUSY

Optimisation of the Detector Concept

Optimisation Benchmarks Analysis

Progress in the last months

Monte Carlo Generators Event Weights Energy Resolution New Detector Model

Summary

Summary

Conclusions

- Single photon events are an interesting BSM signal in model-independent DM scenarios and SUSY
- LDC Optimisation effort can benefit from single photon events
- Model-independent WIMP searches possible at ILC
- Polarisation very important
- ► $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$ gives highest accessible mass range for $\tilde{\chi}_1^0$ up to $m_{\chi_1^0} \simeq \sqrt{s}/2$
- LDC01_05Sc is under construction
- Generator comparison \rightarrow Whizard
- Weight problem solved

Summary

Things to Come

- Inclusion of SLAC sample for other SM backgrounds
 - ► Beamstrahlung, energy spread, crossing angle ⇒ luminosity spectrum
 - Full simulation of new LDC01_05Sc
- Reconstruction with new PFA algorithms
 - PhotonFinder (P. Krsostonic)
 - TrackBasedPFlow (O. Wendt)
 - PandoraPFA (M. Thomson)
- Analysis of SUSY scenario
- Comparison of different detector models

Thank You

Outline

Results

Sensitivity Mass Resolution

Sensitivity

ILC Reach on Lowest Visible κ_e , LDC Version 1

- Parity and Helicity conserved
- ▶ $\mathcal{L} = 500 \, \text{fb}^{-1}$
- \blacktriangleright Polarisation enhances S/B ratio by factor 8 \sim 10

Sensitivity

ILC Reach on Lowest Visible κ_e

- Standard Model weak interaction like
- ▶ $\mathcal{L} = 500 \, \text{fb}^{-1}$
- Polarisation decreases S/B ratio

Mass Resolution

Mass Resolution of WIMPs

- Parity and Helicity conserved
- $\mathcal{L} = 170 \, \text{fb}^{-1}$
- \blacktriangleright Polarisation increases resolution by factor ~ 6

Monte Carlo Generators

 $\mathsf{NUNUGPV}_{mod}$ vs Whizard w and w/o ISR

10⁶ single photon events, no ISR

- Consistency within 1-1.5 σ (stat.)
- Except at x = 0.967 (radiative Z^0 return)
 - Integration routine in NUNUGPV_{mod}

Monte Carlo Generators

 $\mathsf{NUNUGPV}_{mod}$ vs Whizard w and w/o ISR

- <u>10⁵</u> single photon events with 2 add. ISR photons
- ▶ √s = 500 GeV

- Consistency within 1-1.5 σ (stat.)
- \Rightarrow Whizard chosen for compatibility

New default

- New default
- LumiCal implemented

28

- New default
- LumiCal implemented
- HCAL rings

- ► *r*, *φ*, *z*
- ► local *x*, *y*, *z*
- ▶ global *x*, *y*, *z*
- excentric
- rotated
- Missing: "ECAL plugs"

29

- ► *r*, *φ*, *z*
- ► local *x*, *y*, *z*
- ▶ global *x*, *y*, *z*
- excentric
- rotated
- Missing: "ECAL plugs"

29

x [mm]

-200

Digitisation and Manual Calibration

- One set of calibration constants (MokkaCaloDigi)
- Angular and energy dependance

Digitisation and Manual Calibration

- One set of calibration constants (MokkaCaloDigi)
- Angular and energy dependance
- Degradation of energy resolution

Digitisation and Manual Calibration

- Manual calibration
- Barrel, endcaps and transition region

30

Digitisation and Manual Calibration

LCWS

- One set of calibration constants (MokkaCaloDigi)
- Angular and energy dependance
- Degradation of energy resolution

Digitisation and Manual Calibration

Now

- Manual calibration
- Barrel, endcaps and transition region

Energy Resolution

Tests with Single Particle Gun

- Aim for energy resolution $\frac{\Delta E}{E} = \frac{14.4\%}{\sqrt{E}}$ (LDC01)
- Test with particle gun
- ▶ 20 < E_{γ} < 240 GeV at 90°
- Resolution at $\frac{\Delta E}{E} = \frac{14.9\%}{\sqrt{E}}$
- Calibration of simulation for MC events
- Caveat: no reconstruction

Energy Resolution

Tests with Single Particle Gun

- Aim for energy resolution $\frac{\Delta E}{E} = \frac{14.4\%}{\sqrt{E}}$ (LDC01)
- Test with particle gun
- ▶ 20 < E_{γ} < 240 GeV at 90°
- Resolution at $\frac{\Delta E}{E} = \frac{14.9\%}{\sqrt{E}}$
- Calibration of simulation for MC events
- With full event reconstruction
- Try with Photon ID again

Energy Resolution with Full Reconstruction

- Full event reconstrution
- ► Energy resolution far above ΔE/E = 14.4% / √E
- Wrong calibration constants
- Cluster splitting

- Tests with particle gun
- ▶ 20 < E_γ < 240 GeV at 90°</p>
- Caveat: no reconstruction
- Try with Photon ID next

Energy Resolution

LCWS

- Wrong calibration constants
- Full reconstruction
- Energy resolution far above $\frac{\Delta E}{E} = \frac{14.4\%}{\sqrt{E}}$

Now

- Tests with particle gun
- ▶ 20 < E_{γ} < 240 GeV at 90°
- Caveat: no reconstruction
- Try with Photon ID next

34

Supersymmetry

SUSY:

- Extension to Standard model (SM)
- Predicts superpartners
- Grand unification possible

Single photon events:

- Radiative neutralino production
- ► Only kinematicly allowed process, if other SUSY masses > √s/2

Supersymmetry

SUSY:

- Extension to Standard model (SM)
- Predicts superpartners
- Grand unification possible

Single photon events:

- Radiative neutralino production
- ► Only kinematicly allowed process, if other SUSY masses > √s/2

Supersymmetry

SUSY:

- Extension to Standard model (SM)
- Predicts superpartners
- Grand unification possible

Single photon events:

- Radiative neutralino production
- ► Only kinematicly allowed process, if other SUSY masses > √s/2

- Single photon events are an interesting BSM signal as well in model-independent DM scenarios and SUSY
- LDC Optimisation effort can benefit from single photon events
- Model-independent WIMP search possible at ILC
- Polarisation very important
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$ gives highest accessible mass range for $\tilde{\chi}_1^0$ up to $m_{\chi_1^0} \simeq \sqrt{s}/2$

Summary Things to Come

- Inclusion of other SM backgrounds
- Use new LDC and ILD detector simulations
- Comparison of different detector designs
- Analysis of SUSY scenario

WIMPs and Single Photon Events

From Cosmology to ILC

- DM as thermal relic $n \sim e^{-m_{\chi}/kT}$
- ► Expansion of universe → 'freezeout'
- ► Crossing symmetry: $\frac{\sigma(\chi\chi \to e^- e^+)}{\sigma(e^- e^+ \to \chi\chi)} = 2 \frac{v_e^2 (2S_e + 1)^2}{v_\chi^2 (2S_\chi + 1)^2}$
- Emission of photon

38

WIMPs and Single Photon Events

From Cosmology to ILC

- DM as thermal relic $n \sim e^{-m_{\chi}/kT}$
- ► Expansion of universe → 'freezeout'
- Crossing symmetry: $\frac{\sigma(\chi\chi \to e^- e^+)}{\sigma(e^- e^+ \to \chi\chi)} = 2 \frac{v_e^2 (2S_e + 1)^2}{v_\chi^2 (2S_\chi + 1)^2}$
- Emission of photon

Cross section for $e^+e^- \rightarrow \chi \chi \gamma$

- Model independent
- Parameter: annihilation fraction to electrons κ_e

