

MSTBT Metrology and stabilisation

A.Jeremie B.Bolzon, L.Brunetti, N.Geffroy

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

Introduction

Example of spectral analysis of different disturbance sources

Ground motion :

Acoustic disturbance :

First results of stabilisation in the nanometre scale

This mock-up and feedback are the "end deliverable" for our task

Experimental set-up

Feedback input: Sensor at the freepart of the beam

PCI6052 DAQ: Sensor acquisition and actuator control

State of the art inertial sensors

✓ NI PCI-6052 Multifunction DAQ

PCI-6052E	Quantity	Resolution	Rate	Conversion	Range	Noise
Analog	8 Differential/	16bits	Up to 333kS/s	Successive	±0.05 to 10V	60uV from
Input	16 Single-ended			approximation		DC to 1MHz
Analog	2 Single-ended	16 bits	333kS/s	Successive	±10V	
output				approximation		

Fast card

Low noise card

Compatible Matlab/Simulink (Softwares used for the algorithm)

Sensors		SP500B		ENDEVCO86
Sensitivity		2000V/m/s		10V/g
Frequency range		0.0167 – 75Hz		0.01 – 100 Hz
Integrated electronic noise above 4Hz	Î	0.085nm		0.6nm
Quantity		2	1 Y	2

Sensors	VE-13	Guralp CMG-	SP400U	GSV-320	ENDEVCO
		40 T			86
Sensitivity	1V → 1 mm/s	1V → 0.625mm/s	1V→1 mm/s	1V → 0.5 mm/s	1V → 0.1g
Garanteed	1 <u>-315 H</u> z	0,033 - 50 Hz	0,1-50 Hz	1 - 315 Hz	1-100 Hz
frequency		9	(M)	- 1 × 1	
range			R.		
Quantity	2	2	2	2	2

nm stabilisation equipment exists

Feedback loop

Another approach of the problem

Active compensation

L.Brunetti

Results

Tests in simulation

Active control CIM

Tests with the large prototype

Active control CIM

Tests with the large prototype

Active control CIM

Tests with the large prototype: quiet room

integrated displacement RMS (with active table ON)

Combine passive and active stabilisation

 \checkmark In the case of a possible partnership, we have no competence about active isolation.

 \checkmark In the case of the development of a low cost table (this one is very expensive), we have no information about the mechanism (mainly the feedback loop).

• <u>Passive isolation :</u> attenuates all the high frequency disturbances but amplifies the low frequency disturbances (like a resonant filter).

• <u>Active isolation :</u> attenuates the disturbance amplified by the passive isolation (low frequencies disturbances).

> Test of active isolation on a small mock-up...

The small and elementary mock-up

Active isolation

✓ Association of active and passive isolation :

Multipoint stabilisation

Test the algorithm with a small prototype

Brief summary

Description of the prototype :

Location and technology of the instrumentation Small mock-up

Experimental results :

Actuator	Sensor	PZT0	PZTM	Optical
PZT0	PZTM		VG	G
PZT0	Optical		G	VG
PZTM	PZT0	VG	VB	G
PZTM	PZTM	N	VG	N
PZTM	Optical	G	VB	VG
	Very bad	No effect	Good Very	good

The rejection always works at the measurement point of the feed-back.

The behaviour of the beam changes with the configuration.

Conclusions

Hardware :

- Acquisition chain able to measure at a nanometre scale
- Actuators to create nanometre displacements
- A real time solution to run automatics algorithm

Control:

- 2 types of algorithms for active compensation
- A beginning of study for active isolation

> We have succeeded in stabilizing an elementary structure at a nanometre scale with a natural environment (some EUROTeV reports)

PhD Benoît Bolzon in November 2007

Future prospects :

• The purpose now is to obtain the best possible stabilization all along the elementary mechanical structure (lower or equal to the imposed tolerance)

"spin-off" of EUROTeV

 We've been asked to contribute to the FD support study in ATF2 with our knowhow of nanometre-level measurements and of stabilisation.

4.3.6.3 Milestones and expected result of this Work Package:

Date **Milestone** 6 months Detailed scope and planning report to First Workshop. 18 months Presentation of results and detailed implementation at Second Workshop. 30 months Presentation of phase 2 results to Third Workshop; plans for GDI-TDR input and further R&D (phase 3 and beyond). 30 months LICAS RTRP prototype test programme complete. Evaluation of mechanical stabilisation techniques complete. 36 months Site ground vibration characterisation programme complete. 36 months

4.3.6.4 Deliverables of this Work Package:

Deliverable number Deliverables Dissemination level

- 1 Prototype mechanical stabilisation system. PU
- 2 Prototype laser-based stabilisation system. PU

3 3 and 5 car prototypes of laser-based RTRS system. PU

4 Database (with public web interface) of catalogued and characterised ground vibration spectra. PU

Plans for 2008

- Test the robustness of feedback algorithm
- Continue study on a multiple I/O feedback system
- Explore further into the "isolation" system
- Future within EUCARD : Stabilisation task in NCLinac WP => CLIC/CTF3 FF and Quadrupole module

