WP7: Metrology and Stabilisation LiCAS and MONALISA progress

LiCAS = Linear Collider Alignment and Survey MONALISA = Monitoring Alignment & Stabilisation with high

Accuracy

WP6: Stabilisation and Alignment

LiCAS = Linear Collider Alignment and Survey,

Who are we now

Eurotev annual meeting, David Urner

academic

Armin Reichold

Gregory Moss

Rov Wastie

Mike Dawson

Sigal Cohen

Ron Morton

Gregorz Grzelak

electronic & DAQ

student*ic*

(PhD)

John Green Robert Apsimon*2 Peter Baker John Nixon Edward Botcherby Ken Chuang Thomas Zlosnik Simon Wilshin*4 Chris Glassman*3 James Robinson Pauline Sliwa Anna Lewis **Richard Ollerhead** Total: 12

> Project & Masters & ex. PhD **Students**

- Johannes Prenting
- Markus Schloesser

What is our Mission

- All ILC elements need to be accurately aligned to produce ultra high luminosity
- We do the reference network **Survey** (LiCA**S**):
 - 200µm vertical = our slice of tolerance budget
 - over 600m = O(betatron) wavelength
- Open air survey too inaccurate due to instrument resolution and refraction (3mm) and ...
- ... "somewhat" slow and ...
- … "a touch" expensive →
- Need new techniques & instruments
- We develop these based on experience with ATLAS and ZEUS alignment systems

RTRS Concept (design overview)

- Robotic survey instrument
- designed to autonomously survey reference network in the linac tunnel
- uses novel survey technology (FSI, LSM)
- needs very advanced data analysis techniques
- now located in a test tunnel at DESY

LiCAS Measurement Unit Assembly

- Assembly was VERY hard work over a very long time under clean room conditions
- The Oxford workshop was essential in making this happen (lots of overtime, weekends, long hours, fast turnaround)
- John did 30 days straight in the clean room!!

we now have three of these at DESY

Eurotev annual meeting, David Urner

LiCAS Measurement Unit Assembly

They are nice, shiny and jolly heavy when completed!

- RTRS = Large scale robotic sensing system
 - Robotics:
 - 1 ton moving mass
 - each measurement unit moves in 6D
 - 25 axis of motion
 - 39 CAN bus controlled stepper motors
 - 6 network controlled picco motors
 - 3 drive motors with 6 kW total power
 - 82 limit and proximity switches
- DAQ
 - 102 MB data per stop
 - 4 servers with 1.2 TB storage take data via:
 - CAN, USB-II, RS485, TCP-IP, PCI
- Mechanics
 - vacuum system with > 100 accesses, joints and feedthroughs, many custom
- Calibration
 - all sensing elements measured with CMM and smart scope
 - in-situ calibration procedure for entire RTRS
- FSI length scale will be 23.1.2008

- Sensing systems (data source rate):
 - 38 FSI interferometers (210 MB/sec)
 - 12 LSM cameras (298 MB/sec)
 - 3 wall marker cameras (78 MB/sec)
 - 96 calibrated temperature sensors
 - 3 computer controlled lasers
 - 12 axis of gravity reference tilt sensors

Eurotev annual meeting, David Urner

- Straightness Monitors
 - sub micron accuracy spot fitting (0.2 μm in air, should improve in vacuum)
 - reconstruction of 4-DOF confirms system performance (see below)
 - method for in-situ calibration works in simulation
 - thesis by G. Moss expected Sep. 08

- Frequency Scanning Interferometry
 - interferometers for long and short lines exceed specification of 1 μm in lab experiments
 - Technology for serial production of low cost interferometers works
 - long line reference interferometers show world leading resolution (see below)
 - Methods for auto-calibration of external FSI network without any need for witness observation close to completion
 - Thesis from J. Dale expected Sep. 09

LiCAS-I project status summary

- RTRS fully constructed and installed at DESY (70m tunnel)
- Majority of subsystems commissioned and integrated into the DAQ software
- All measurement techniques proved principle and resolution in laboratory experiments
- Techniques for in-situ calibration have been developed
- Simulation and reconstruction software has been written and works
- Small team at DESY now on LTA (Greg, John, Armin)

- Remaining goals for the first prototype:
 - complete commissioning
 - calibration and operation in test tunnel at DESY
 - analysis of data with multiple methods
 - conclusions for the next generation instrument

Monitoring Alignment & Stabilisation with high Accuracy

Armin Reichold

David Urner

Paul Coe

Matthew Warden

• ILC luminosity goal : Focus 639 nm x 5.7 nm (1 σ)

- BDS must provide sufficient
 - instrumentation
 - diagnostics
 - feedback systems
- Principal challenges include :
 - tight tolerances on magnets (Order nanometres)
 - "may well" require mechanical stabilization of critical components

Monitoring (relative) alignment

Push-Pull

After reposition of detector MONALISA can measure position of QD0s to 1μ m Likely realignments of vertical lateral and pitch axis of QD0s are required

Hardware

- Built novel Interferometer designs
- Pioneered new phase measurement techniques
- vacuum vessel to demonstrate nm precision being currently commissioned.
- Tested compact launch optics
- Software
 - Developed novel phase analysis technique
 - Collaborated with LiCAS on OO analysis package
 - Developed binary file format for data handling
 - users MonAliSA, LiCAS and ATLAS (FSI)...
 - Available in Java, C and LabVIEW

FFI: Fixed Frequency Interferometry (OPD 400mm)

FFI: Fixed Frequency Interferometry (OPD 400mm)

- Fixed frequency laser (FFI)
- Compact Launch: 25x25x15mm
- Test shown here with moving mirror
- First stationary mirror test :
 - resolution 5 nm demonstrated
 - to be improved with vaccuum
 - and laser frequency stabilisation

FFI: Fixed Frequency Interferometry (OPD 400mm)

- Take ultra narrow line-width laser at 1560 nm
- Amplify with EDFA (erbium doped fibre)
- Frequency double in PPLN to produce 780 nm
- Use saturated absorption spectroscopy ⁸⁷Rb to pick out hyperfine structure
- Lock source laser to peak providing stability of a few kHz (compared to 1 MHz without Rb)
- At 10 m range, 1 MHz limits resolution to 5 nm
 - locked laser (theoretically 20 pm)
 - other errors will take over

Frequency stabilisation Eurotev annual meeting, David Urner

Frequency standard: ⁸⁷Rb D₂ line at 780 nm

Simplified Schematic:

- Need 20 kHz stability for 1nm over distances of 10m.
- NPL done ~kHz.

FSI:Frequency Scanning Interferometry (OPD 400mm)

Eurotevannual meeting, David Urner

Plans

- Combine FSI and FFI in same measurement
 - Should achieve nm resolution
- Laser frequency stabilisation with ⁸⁷Rb standard
 - Required for stable FFI
- Demonstrate nm resolution in vacuo
 - Install interferometers into vacuum drum
- Continue analysis software collaboration with LiCAS
 - Analysis framework
 - Adapt LiCAS readout hardware / software
- Develop CSM
- Monitor ATF2 IP

Eurotev annual meeting, David Urner

END

- Performance Simulations
 - Survey simulations over full linac length have been performed and exceed requirements (see below)
 - linac alignment simulations interfaced to accelerator simulations (PLACET)
 - alternative methods for large scale simulations and reconstruction of tunnel co-ordinates are in the making

Novel technique for multi-fibre phase

Signals from 2 fibres

Normalise onto unit circle