

Collimator Design

Adriana Bungau

The University of Manchester, UK

Annual EuroTev meeting - Frascati, Italy, 23 - 25 January 2008

Content

- Introduction

- SWMD collaboration
- Collimator design requirements
- Wakefield Measurements at SLAC-ESA
 - T480 experiment (collimators, beam parameters)
 - data analysis
- Collimator Damage Tests at ATF
 - test plan
 - schedulle
 - test equipment
- Conclusion

People - SWMD collaboration

Birmingham: N.Watson, M Slater

SFTF: L.Fernandez, G.Ellwood, J.Greenhalgh, B.Fell, S. Appleton

CERN: G.Rumolo, D.Schulte, A.Latina

Lancaster: D.Burton, J.Smith, R.Tucker

Manchester: R.Barlow, A.Bungau, R.Jones

Darmstadt: M.Karkkainen, W.Muller, T.Weiland

Also: a strong collaboration with **SLAC** (S.Molloy and M.Woods) for wakefield beam tests and **KEK** for collimator damage.

Requirements

Significant problems:

- short-range wakefields ->lead to emittance dilution and beam jitter at the IP
- impact of a no of high density bunches can damage the spoilers
- 1. Spoiler geometry must reduce the wakefields to an acceptable level
 - long, shallow tapers of ~20 mrad,
 - short flat upper section of 0.6 r.l.
 - high conductivity surface coating

the wakefield aspects of the design are addressed by experimental work centered around T480 project at SLAC-ESA and simulations with Gdfidl, Echo, Merlin, Placet (see Daniel's talk)

2. Spoilers are required to survive 2 bunches at 250 and 1 bunch at 500 GeV

- use bulk material to minimise fractures, stress but optimal for heat flow
- long path length for errant beams striking spoilers (large r.l : graphite, beryllium etc)

the design approach consider simulations with FLUKA, Geant4, EGS4, ANSYS and experimental work at KEK

4

0.6 r.l

T480 experiment at SLAC-ESA

Wakefield tests at SLAC-ESA

Parameter	SLAC ESA	ILC-500
Repetition Rate	10 Hz	5 Hz
Energy	28.5 GeV	250 GeV
Bunch Charge	2.0 x 10 ¹⁰	2.0 x 10 ¹⁰
Bunch Length	300 µm	300 µm
Energy Spread	0.2%	0.1%
Bunches per train	1 (2*)	2820
Microbunch spacing	- (20-400ns*)	337 ns

Aim: measure the beam kick and compare it with theoretical predictions and simulations

Polarized

Electron

Source

Positron to PEP-

Electrons

Thermionic

Electron

Source

Beam Parameters at SLAC ESA and ILC Beam

PEP-II Damping Rings 2.Mile Linac Electrons to PEP-II Switch PEP-II Positron Source Positrons End Station A

Beam size:

100 um vertically

0.5-1.5 mm longitudinally

Side view	Beam view	Revised 27-Nov-2006
1.4mm	11mm E S h=38 mm	α=166mrad r=1.4mm (1/2 gap)
0 1 =21mm	n	α=166mrad r =1.4mm
20 κ =21mm	n	α=166mrad r =1.4mm
=21m	m	α=166mrad r=1.4mm
	Side view	Side viewBeam view 1.4 mm -211 mm 1.4 mm -211 mm 0 -21 mm

Collim.#	Side view	Beam view	Revised 27-Nov-2006
13	OFE Cu α ₂ =21 mm	E	$\alpha_1 = \pi/2 \text{ rad}$ $\alpha_2 = 166 \text{mrad}$ $r_1 = 4.0 \text{mm}$ $r_2 = 1.4 \text{mm}$
14	Ti6Al4V α2 =21 mm		$\alpha_{1}=\pi/2 \text{ rad}$ $\alpha_{2}=166\text{mrad}$ $r_{1}=4.0\text{mm}$ $r_{2}=1.4\text{mm}$
15	α ₂ =21 mm ~125 mm		$ \alpha_1 = \pi/2 \text{ rad} $ $ \alpha_2 = 50 \text{mrad} $ $ r_1 = 4.0 \text{mm} $ $ r_2 = 1.4 \text{mm} $
16	OFE Cu		non-linear taper r=1.4mm

Designed Collimators

ESA beamline

Wakefield Box

- readings from each BPM were recorded together with the bunch charge and energy

- the kick was determined by performing a straight line fit to the upstream BPM and a separate one to fit the downstream ones

- the kick was calculated as the difference in the slopes of these fits

Data analysis

Luis Fernandez - Daresbury

Measured and calculated kick factor

Collim No	Experimental measurements (V/pC/mm)	Gdfidl calculations (V/pC/mm)	Analytic predictions (V/pC/mm)	3-D Modeling prediction kick (V/pC/mm)
1	1.2 0.3	1.7 0.4	2.27	1.63 0.37
2	1.9 0.2	3.1 0.8	4.63	2.88 0.84
3	4.4 0.3	7.1 0.9	5.25	5.81 0.94
4	0.6 0.4	0.8	0.56	0.8
5	4.9 0.3	6.8	4.59	6.8
6	1.0 0.1	2.4 1.1	4.65	2.12 1.14
7	1.4 0.3	2.7 0.5	4.59	2.87 0.53
8	1.0 0.2	2.4 0.9	4.59	2.39 0.89
10	1.4 0.2			
11	1.7 0.1			
12	1.7 0.1			
13	1.9 0.2	1.2 0.3		3.57 0.98
14	2.6 0.1			3.57 0.98
15	1.6 0.1			2.51 1.16
16	1.6 0.2			2.35 1.50

Collimator Damage Experiment at ATF

Previous simulations

Aim: the collimators can be damaged by the impact of several bunches

Exceeds fract	ure temp. 🎵	'emperatui	re increase	from 1 bunc	h impact
Exceeds melting temp.		2mm depth		10mm depth	
		<mark>250 <u>Ge</u>V e</mark> ⁼ 111×9 <i>µ</i> m²	500 GeV e- 79.5×6.4 µm²	<mark>250 GeV</mark> e⁻ 111×9 μm²	500 GeV e [_] 79.5×6.4 µm²
	Solid Ti alloy	420 K	870 K	850 K	2000 K
	Solid Al	200 K	210 K	265 K	595 K
	Solid Cu	1300 K	2700 K	2800 K	7000 K
	Graphite+Ti option 1	325 K	640 K	380 K	760 K
	BervIlium+Ti ≈ option 1	-	-	-	675 K
Jun-árcón	Graphite+Ti option 2	290 K	575 K	295 K	580 K
	Graphite+Al option 2	170 K	350 K	175 K	370 K
	Graphite+Cu option 2	465 K	860 K	440 K	870 K
	Graphite+Ti option 3	300 K	580 K	370 K	760 K

Luis Fernandez - DL

16

Stress wave

George Ellwood - RAL ¹⁷

Purpose of the ATF test

First run at ATF

- commisioning of the vacuum vessel, multi-axis mover, beam position and size monitors

- validate the mode of operation required for ATF tests

- measurement of the size of the damage region after individual beam impacts on test target (validation of FLUKA/ANSYS simulations of properties of material)

- ensure that the radiation protection requirements can be satisfied

Next phase at ATF2

- measure the shock waves within the sample (VISAR or LDV) for single bunch and multiple bunches at ~ILC bunch spacing

ATF Schedule

February:

- 1st week mover commisioning at RAL
- 2nd week installation at KEK
- 3rd week testing readout of beamline instrumentation
- 4th week measurement of samples

- shock wave measurements are planned at ATF2

Test location

Sample Target

- we would like to use a 100µm thick Ti-6AI-4V sample.
- the sample will probably be held between knife edge grips, similar to those illustrated.
- we could leave the top of the sample free from the grips.

Reference Location

Beam operation

• Once the reference edge has been found we will use the VG manipulator to step the sample a known distance in X and Y.

•We will then increase the charge and try to damage the sample.

•Then we will move the sample to a new location and try to damage with a different charge.

•We will continue to do this until we have performed all the planned tests.

Fluka Predictions

- after testing, we intend to measure the are of damage of each impact with a Scanning Electron Microscope

- we will know the location of each damaged region because know the distance from the reference edge.
- this will help validate our predictions on beam damage.

Bunch $\sigma_x \times \sigma_y (\mu m^2)$, material	Estimated damage region, x	Estimated damage region, y	Estimated damage region, z
1.9×0.5, Ti alloy	11 (14) μm	4 (5.6) μm	5 (8) mm
20×2, Ti alloy	45 (90) μm	5 (9) μm	2 (7) mm

Luis Fernandez - Daresbury

SWMD Summary

- Wake field simulations and ESA measured kicks agree for some measurements within 10%.
- Possibility of next run at ESA depends upon funding situation
- Simulations and first beam damage studies will be done in February'08 at ATF.
- First draft mechanical engineering design of the spoilers is made and will be presented at EPAC'08. The details and optimisation of this design will depend upon available engineering resources within STFC.