Perfect Pattern Recognition Particle Flow Reconstruction

Benchmarking meeting 12/4/07 Ron Cassell

What does it do?

- Input: Full detector simulations (SLIC)
- Output: Collection of ReconstructedParticles
- Original intent: Examine the potential of a PFA for a detector

How does it do it?

- For charged particles that are "trackable", define Tracks and smear parameters (MCFast).
- Define a set of "reconstructable" particles (avoid double counting)
- For "nontrackable" particles, assign energy deposits in the calorimeters (cheat) and do neutral particle reconstruction using those deposits.

How realistic is it?

- Tracking: The tracking is parameterized as in the FastMC. However, full detector effects (interactions and decays) before the calorimeter are taken into account in deciding which particles are actually tracked.
- Neutrals: No parameterization. Perfect pattern recognition (no confusion term), but actual detector responses used for energy and direction. So most of the nasty nonlinear, nongaussian effects are included.

ReconstructedParticle

- Please use it!
- If we present a full PFlow reconstruction tomorrow, next month, or later your analysis programs will not have to change.
- Either the FastMC or the PPRPflow output a list of ReconstructedParticles.

Usage

- In cvs, org.lcsim.contrib.Cassell.recon.Cheat contains CheatReconOutputExample.java.
- This example does the PPR reconstruction, writes the ouput to disk, and contains examples of accessing information from ReconstructedParticle.