
Photocathode R&D

- Faraday rotation
 - Signal still reproducible
 - Computer DAQ written
 - Ordered lapping of n-type bulk GaAs (undoped, 6×10¹⁷, 1×10¹⁸) to Valley Design
 - Delay line optics need improvement
 - NEOS AOM
 - RF modulation is checked out (Prepost)

First Faraday data

Delay line optics

SBIR Phase I with SVT Associates

- Status
 - One CRADA (AlGaAsSb) has been signed, and the second CRADA will be signed shortly.
 - In the meantime, SVT has gone ahead on calibrating the growth conditions.
 - Two test samples have been grown without our input.

Al_xGa_{1-x}As_{1-y}Sb_y-GaAs superlattice

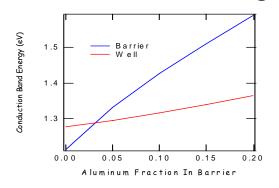
- Structurally similar to InAlGaAs-GaAs
 - Indium is replaced by Antimony

Proposal:

#	х	v	well	barrier	Bandgap	LH-HH splitting	a_w/a_ b
π	~	у	Weil	barrier		spirtung	0
1	0.4	0.13	1.5nm	4nm	1.63eV	49meV	1
2	0.5	0.13	1.5nm	4nm	1.72eV	62meV	
3	0.4	0.15	1.5nm	4nm	1.63eV	54meV	1.2
4	0.5	0.15	1.5nm	4nm	1.70eV	65meV	
5	0.4	0.18	1.5nm	4nm	1.63eV	58meV	1.4
6	0.5	0.18	1.5nm	4nm	1.72eV	67meV	

Sample #1 has been grown. QE was too small ($\sim 10^{-4}@650$ nm).

 Internally biased AlGaAs-GaAs superlattice


To study the graded bandgap structures we propose to begin with AlGaAs/GaAs superlattice structures with the Al concentration varying in each barrier (from 0.15 to 0.05) to provide the 0.1eV grading of the bandgap.

AlGaAsSb-GaAs superlattice

- Replacing the column III Indium with the column V Antimony has a significant effect.
 - InGaAs-GaAs is type I but GaAsSb-GaAs is type II

Flat conduction band requires ~3% Aluminum, but we need more than 10% Al for Eg > 1.42 eV.

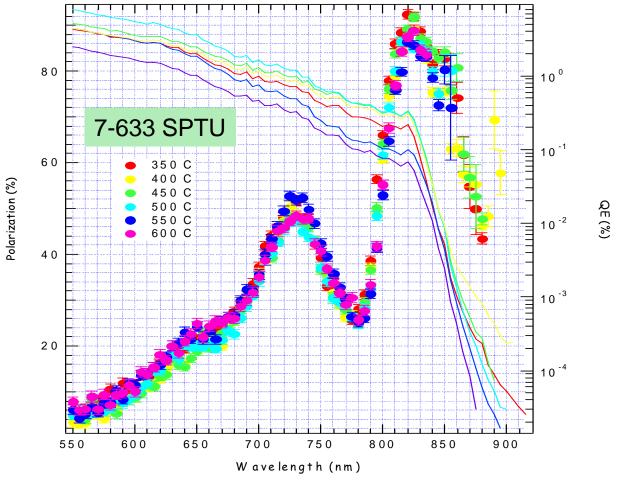
 The electron confinement energy becomes too large for x > 0.15. The test sample had x=0.4; consistent with low QE.

Al_xGa_{1-x}As_{1-y}Sb_y-GaAs superlattice structures

- Duplicate InAlGaAs-GaAs structures
 - Same lattice mismatch \rightarrow y=0.18
 - Same barrier (4 nm) and well (1.5 nm) width
- Three Aluminum fractions
 - X=0.05, 0.10 and 0.15

Internally biased AlGaAs-GaAs

- Three structures
 - Reference $AI_{0.35}Ga_{0.65}As$ (3nm) GaAs (2nm)
 - Aluminum graded sample
 - $AI_xGa_{1-x}As x=0.35 \rightarrow 0.25$


- Doping graded sample
 - Doping level graded from $5 \times 10^{18} \rightarrow 5 \times 10^{17}$

Russian AlInGaAs-AlGaAs superlattice

- Four wafers (7-632, 633, 634, 635) have been grown.
 - Two wafers are duplicate of 7-307.

