

Thoughts on Physics Analyses with ILD Full Simulation and Reconstruction

Marco Battaglia UC Berkeley and LBNL

ILD NA MeetingLAWRENCE BERKELEY NATIONAL LABORATORYDecember 5, 2007

Report to the ILC World-wide Study

Physics Benchmarks for the ILC Detectors

arXiv:hep-ex/0603010 v1 6 Mar 2006

0. Single e^{\pm} , μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K^{0}_{s} , γ , u, s, c, b; $0 < |\cos \theta| < 1$, 0 GeV

1.
$$e^+e^- \rightarrow ff$$
, $f = e$, c , b at $\sqrt{s}=1.0$ TeV;

2. $e^+e^- \rightarrow Zh, \rightarrow \ell^+\ell^-X, m_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV};$

3.
$$e^+e^- \rightarrow Zh, h \rightarrow c\bar{c}, \tau^+\tau^-, WW^*, m_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV};$$

4.
$$e^+e^- \rightarrow Zhh$$
, $m_h = 120 \text{ GeV at } \sqrt{s} = 0.5 \text{ TeV};$

5.
$$e^+e^- \rightarrow \tilde{e}_R \tilde{e}_R$$
 at Point 1 at $\sqrt{s}=0.5$ TeV;

6.
$$e^+e^- \rightarrow \tilde{\tau}_1\tilde{\tau}_1$$
, at Point 3 at $\sqrt{s}=0.5$ TeV;

7. $e^+e^- \rightarrow \chi_1^+\chi_1^-/\chi_2^0\chi_2^0$ at Point 5 at $\sqrt{s}=0.5$ TeV;

A Proposal for a Physics Study within the ILD Optimisation Effort

Study of cross section and foward-backward asymmetries for $e^+e^- \rightarrow cc$ at 0.5 and 1.0 TeV emerges as an important process for understanding ILD optimisation and performance in terms of tracking and vertexing in a simple process;

Experience gained, easily transferable to study of $H \rightarrow cc$ in HZ and Hvv

Experimental Ingredients

- <u>charm tagging</u> with ~democratic background; study jet flavour tagging capabilities down to small polar angle; optimise barrel/fwd transistion of VTX, material distribution, match to TRK, pair / $\gamma\gamma \rightarrow$ hadrons background sensitivity
- <u>quark charge determination;</u> study vertex charge and jet charge
- <u>parton direction reconstruction</u>, gluon radiation rejection; jet algorithms, use primary-secondary vertex vector, correction for vs in s.l. charm decays;

$e^+e^- \rightarrow cc$ at 0.5 and 1.0 TeV

 $e^+e^- \rightarrow cc$ is an interesting process featuring sensitivity to tracking and vertexing performances and less critically dependent on PFAs;

Most required software tools already available at 0th order, need to optimise performances, study effect of various detector configurations;

Interpretation of ILD accuracy on σ_{cc} and A_{fb} in terms of sensitivity to New Physics, may engage theory community at FNAL and elsewhere;

$e^+e^- \rightarrow cc$ at 0.5 TeV

Measurement of cc cross section: moderate cross section, requires 2 tags and low background;

a ser fight			
NEEL P	$\sigma_{\rm ff}({\rm pb})$		
cc	0.74	1	
bb	0.40		
μμ	0.45		

1000 2000 3000 4000 5000 6000 7000 8000 900010000

 $M(Z_{SSM})$ (GeV)

AWRENCE BERKELEY NATIONAL LABORATORY

-0.06

-0.08

-0.1

A_{FB} in e⁺e⁻ \rightarrow cc at 0.5 TeV

Further sensitivity on NP scale and nature can be obtained with A^{cc}_{FB} determination;

Experience at LEP with Jet charge algorithms;

Improved sensitivity expected using vertex charge, requires fwd coverage;

LAWRENCE BERKELEY NATIONAL LABORATORY

$e^+e^- \rightarrow cc at 0.5 \text{ TeV}$

Impact Parameter Significance

LAWRENCE BERKELEY NATIONAL LABORATORY

Charm Tagging vs. I.P. Resolution

Study change in efficiency of charm tagging in Z⁰-like flavour composition

Geometry	σ_{IP} (μ m)		
R1 1.2 cm ↓	$4 \oplus 7 / p_t$	c purity=0.7	$\epsilon_{\rm c} = 0.49$
1.7 cm	$4 \oplus 10 / p_t$		$\epsilon_{\rm c} = 0.46$
R1 1.2 cm ↓	$4 \oplus 7 / p_t$	c purity=0.7	$\varepsilon_{\rm c} = 0.49$
2.1 cm	$5.5 \oplus 14 / p_t$		$\varepsilon_{\rm c}$ – 0.40
HPS	$11 \oplus 15 / p_t$	c purity=0.7	$\varepsilon_{\rm c} = 0.29$

Total efficiency = \mathcal{E}^{N} with N = number of jets to be tagged

Hawking,

LAWRENCE BERKELEY NATIONAL LABORATORY LC-PHSM-2000-021

Vertex Charge

Vertex charge algorithms very promising for q-anti q discrimination in b and c jets

Vertex charge extremely sensitive to correct secondary particle tags: any mistake changes result by ± 1

No experience with vertex charge in charm jets: $\langle N_{sec} \rangle = 1.7$

AWRENCE

Our group interested in optimisation and performance assessment with emphasis on vertex tracker and Verte-Main Tracker matching;

Significant effort already deployed in developing Vertex Tracker simulation (charge generation and digitisation) and reconstruction (pattern recognition and standalone tracking) validated on beam tests at 1.5 and 120 GeV;

Performed already an analysis with Mokka+MarlinReco for $e+e- \rightarrow H^0A^0$ with LDC at 1 TeV (B. Hooberman at ALCPG07)

Interested in joining forces with other groups to develop program of physics studies and optimisation within the ILD LoI effort.