ILD NA meeting

General remarks about LoI process
 Some explorations in Higgs-land

 What's important ?
 γγ may be important, how well can it be measured and how does it impact detector design.

Graham W. Wilson, Univ of Kansas

How to contribute to ILD LoI?

- Get involved in Detector Optimization Working Group.
- Currently the main focus is on identifying physics channels where groups have interests.
 - 3 outcomes
 - Demonstrate that detector can do the physics (LoI goal).
 - Understand how to optimize the detector for that physics.
 - Improve understanding of some of the ILC physics capabilities.
- Realistically we need to be up to speed on using eg. Mokka and MarlinReco if we want to contribute to exploring detector variants and reconstruction.
 - The plan is to have fully reconstructed events for DST-like analysis, but one should not wait on this to get started.
- How best to go about choosing topics is an open question (next slide)

What topics to work on ?

- Physics based ?
 - Higgs physics
 - SUSY
 - Precision Measurements
- Detector sub-system design
 - Vertexing
 - Tracking
 - Calorimetry
 - Forward
 - L,E,P.

- Reconstruction
 - Detector sub-system and integrated detector performance
- Object ID
- In-situ L,E,P measurements.
- Detector Performance
- Generator
- Simulation

A rounded program could/should have contributions in several categories. You are very welcome to participate in ways best suited for maximum impact.

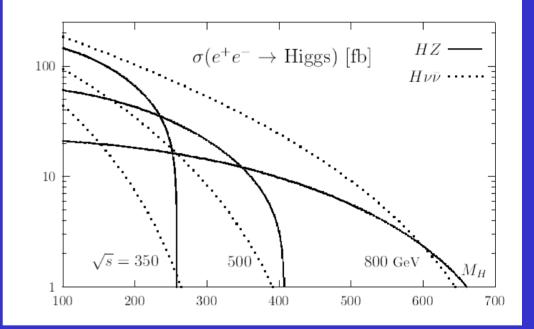
In-situ L, E, P

- $dL/d\sqrt{s}$: Use Bhabha acolinearity.
- $\langle \sqrt{s} \rangle$: Use Z γ , Z $\rightarrow \mu\mu$. Also ee ?
 - claimed, can use non-radiative events too
- P : Explore how well one can use highly polarized physics processes to check beam polarization. Eg. WW, Wev, ννγ in kinematic regimes where t-channel dominates.
 - Can save some lumi relative to doing all the different combinations and unpolarized combinations.

"Physics" Benchmarks

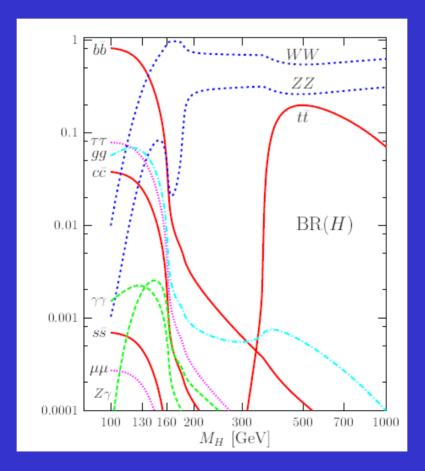
- There will be some agreement across concepts on a minimal set of channels which the LoI proponents are requested to study.
- This, and especially the benchmark panel report (hep-ex/0603010) are good starting points.
- Please note that many existing studies have only been done with fast simulation, often may have been done at inappropriate \sqrt{s} and without taking advantage of polarization, advanced analysis techniques, kinematic fits etc.
 - Doing things better primarily solidifies the physics case not so clear how to map this on to evolving the detector design.
 - Channels studied are often the single highest BR one not necessarily the only or best channel.
- Particularly the single particle and known processes are obvious areas where work will be of lasting value to everybody.

Suggestions

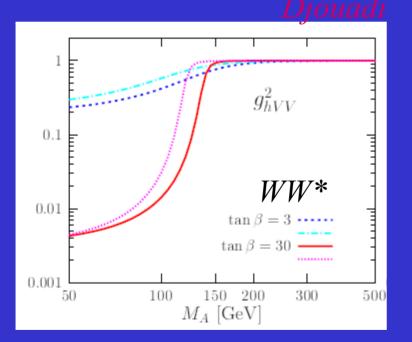

- ffbar (f = q, e, μ , τ)
- WW
- t tbar.

Some explorations in Higgs-land

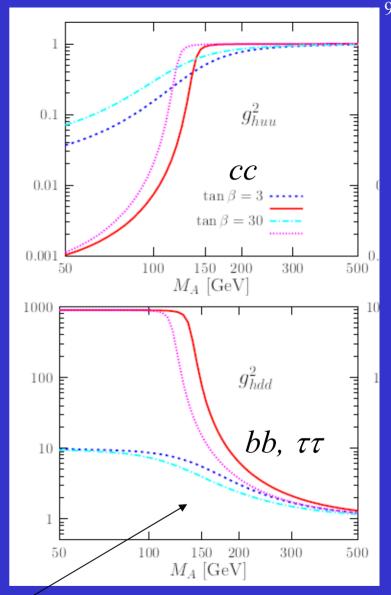
Original motivation was:


Understand how much of a constraint measuring $B_{\gamma\gamma}$ puts on the ECAL.

Have expanded towards getting an appreciation of the important physics questions.


One of the questions is whether "Higgs-factory" type measurements are best done at low \sqrt{s} optimized for Higgs-strahlung. Or much higher \sqrt{s} optimized for WW-fusion. If all you have is 500 GeV, then clearly near threshold is best for low mass Higgs.

SM Higgs Decays

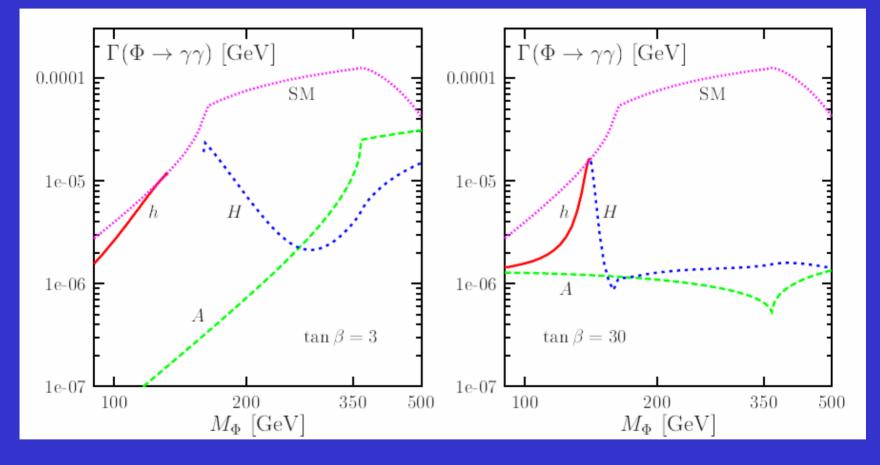


MSSM in the Higgs decoupling regime

Φ $H_{\rm SM}$	$g_{\Phi \bar{u}u}$	$g_{\Phi \bar{d} d}$ 1	$g_{\Phi VV}$ 1	$g_{\Phi AZ}$	$g_{\Phi H^{\pm}W^{\mp}}$	
h	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	$\mp \cos(\beta - \alpha)$	
Н	$\sin\alpha/\sin\beta$	$\cos \alpha / \cos \beta$	$\cos(\beta - \alpha)$	$-\sin(\beta - \alpha)$	$\pm \sin(\beta - \alpha)$	
A	$\cot\beta$	aneta	0	0	1	

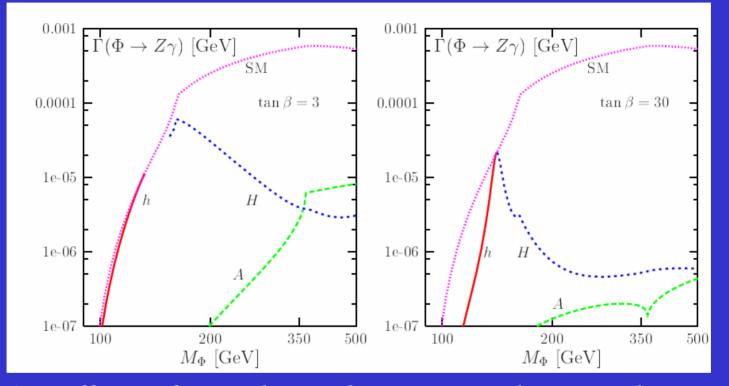
For $m_A \ge 200$ GeV, only the Higgs coupling to down-like fermions differs significantly from SM.

So, primary strategy for distinguishing is to measure bb/WW. (and ττ/WW)


For Higgs physics

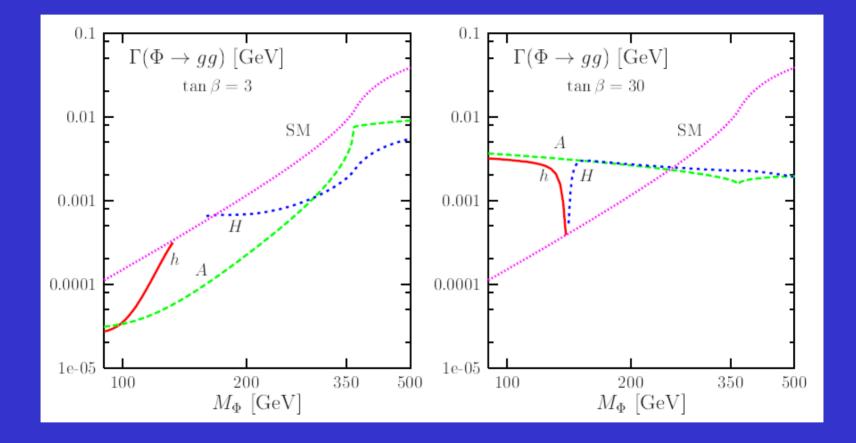
- Studying H → WW* is very important. (By playing off vvh and Zh can test WW and ZZ couplings, and then get at partial widths.)
 - Existing studies look at qq qql ν
 - What about vv qqqq etc.

• $H \rightarrow \tau \tau$.


- Is of similar interest to bb, but also as a CP analyzer. Looking at $qq \tau\tau$, would be very useful.

Higgs Loop Decays ($\gamma\gamma$)

(It is hard for SUSY-like new physics to escape actual detection and show up in this kind of observable, typically 10% effects at most. However other types of physics eg heavy W' would presumably be much more amenable to huge deviations)


Higgs Loop Decays $(Z\gamma)$

Any effects of new physics here are similar to $\gamma\gamma$, but tend to be smaller in BR effect (of order 5%, not 10%).

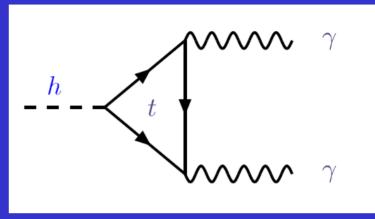
So far don't know of a study on $Z\gamma$. It looks hard but not impossible and will challenge jet+ γ calorimetry. Maybe useful in context of eg. WW γ and QGCs.

Higgs Loop Decays (gg)

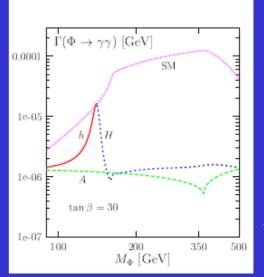
Large QCD corrections in play. But effects are large. Can we identify gluon jets rather than just measuring "non-b,c jets"?

Higgs $\rightarrow \gamma \gamma$

• This was reviewed by F. Petriello at ALCPG.


• Studies done with 1 ab^{-1} at $\sqrt{s} = 350, 500, 1000 \text{ GeV}$ Boos et al., hep-ph/0011366; Barklow, hep-ph/0312268

• For $m_h = 120 \text{ GeV}$:


 $\sqrt{s} = 350 \,\text{GeV} \implies \Delta BR(\gamma\gamma) = 12.1\%$ $\sqrt{s} = 500 \,\text{GeV} \implies \Delta BR(\gamma\gamma) = 9.6\%$ $\sqrt{s} = 1000 \,\text{GeV} \implies \Delta BR(\gamma\gamma) = 5.4\%$

If this is really worth doing well (a few people think $\gamma\gamma$ collider), we need to make sure the detector is well adapted to measuring it at high \sqrt{s} . Will a detector designed for PFA be good enough ?

It is also an area where the ILC could complement LHC measurements.

Any charged particle that gets its mass from the Higgs mechanism will affect the $\gamma\gamma$ width.

In SUSY, 10% effects are possible (most of the rest of the talk was shown at ALCPG CAL meeting this week)

$H \rightarrow \gamma \gamma$ Study

- 4-vector level study using WHIZARD 1.2 files generated by Tim Barklow at $\sqrt{s}=1$ TeV.
 - mH = 120 GeV
 - Signal and background files have no additional ISR photons with p_T .
- Motivation I:
 - Should be able to do much better $B_{\gamma\gamma}$ measurement than at low energy as studied previously. Maybe even competitive with $\gamma\gamma$ collider option.
 - At high \sqrt{s} , Higgs cross-section increases with \sqrt{s} .
 - Dominated by WW fusion. So final state mainly, $v_e v_e \gamma \gamma$
 - ILC luminosity should be higher at higher \sqrt{s} (L ~ \sqrt{s}).
 - WW fusion production. So can use polarized beams to triple signal (and background) cross-section.
- Motivation II:

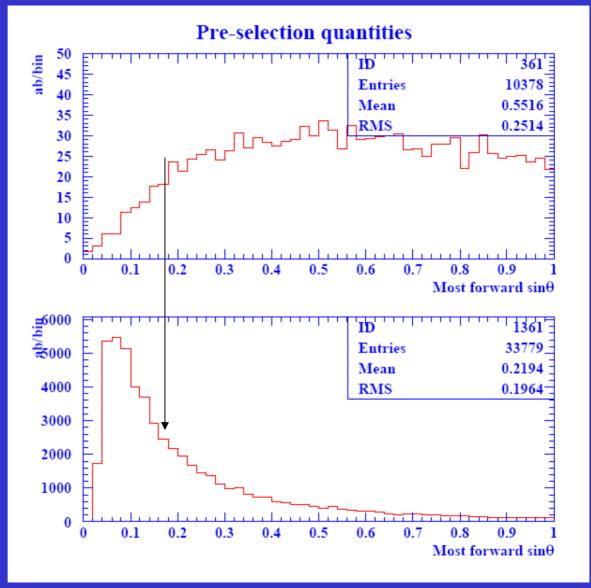
This is supposed to be one of the channels which helps constrain the ECAL design. (It very much drove the CMS and ATLAS designs.)

Study parameters

- Used favorable $P(e_{-}) = -80\%$, $P(e_{+}) = +60\%$.
- Assumed 2 ab^{-1} at $\sqrt{s}=1$ TeV.
- $B_{\gamma\gamma}$ set to 0.220% (HDECAY value)
- Only considered ννγγ for signal and background.
- => Polarized signal cross-section = 1.23 fb

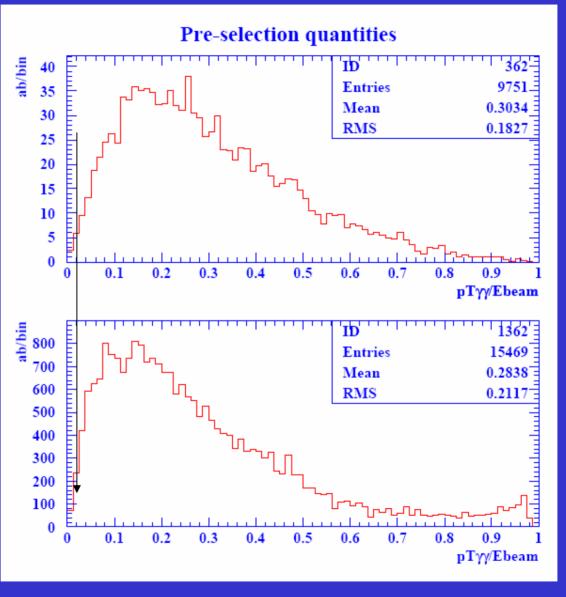
Pre-selection of Higgs $\rightarrow \gamma\gamma$ candidates

• Require that the two highest p_T photons, have polar angle, $|\cos\theta| < 0.985$ defined by edge of endcap acceptance in LDC.


(I explored using more forward photons but it does not appear to be warranted in this physics channel).

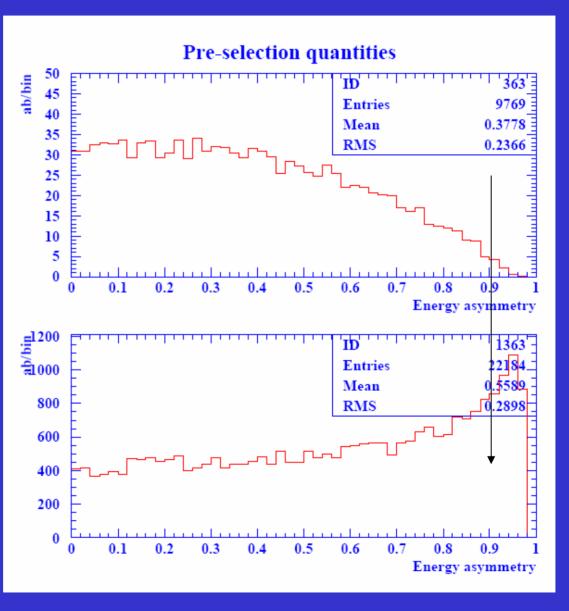
- Missing p_T : $p_T(\gamma\gamma)/E_{beam} > 0.025$.
 - (driven by forward acceptance)
- Energy asymmetry, $a \equiv |E_1 E_2|/(E_1 + E_2) < 0.90$.
- $100 < m_{\gamma\gamma} < 140 \text{ GeV}$
- Pre-selection efficiency = 91.8% (of 1.23 fb)
- Pre-selection bkgd level = 0.572 fb/GeV.

(LHC: signal = 30 fbbkgd = 180 fb/GeV)



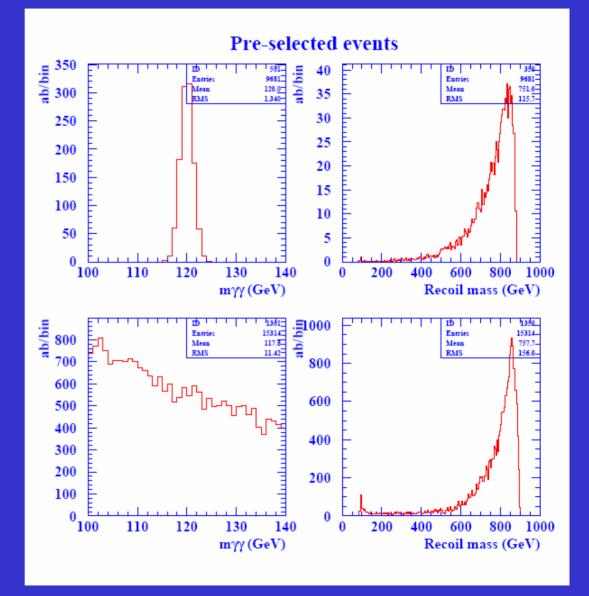
Most plots show the cross-section per bin since they are summed over lots of different samples

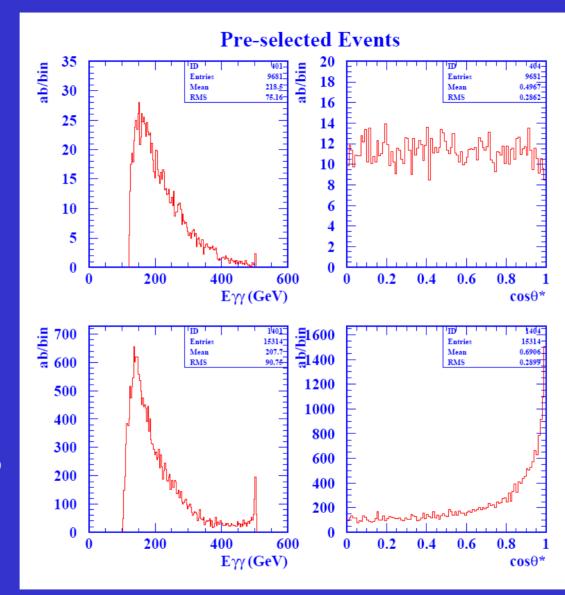
(also – stays away from generator cuts at low angle)


SIGNAL

BACKGROUND

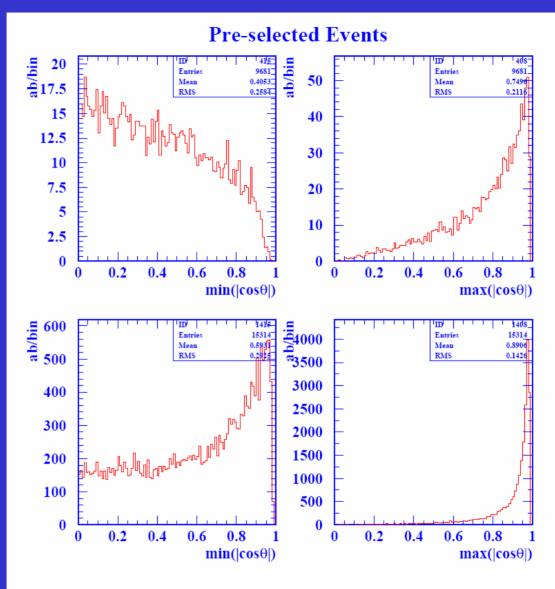
SIGNAL


BACKGROUND


 $\sigma_{E}/E = \frac{10\%}{\sqrt{E(GeV)} \oplus 1\%}$

SIGNAL

BACKGROUND


Uniform as expected for spin 0

BACKGROUND

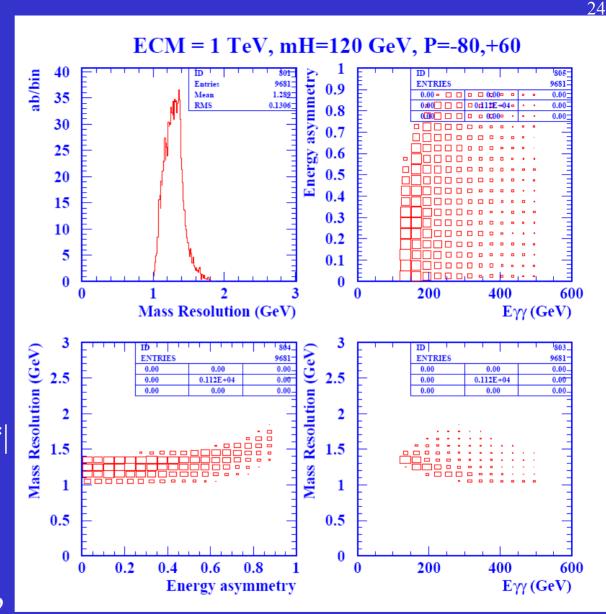
Note modest energy of $\gamma\gamma$ system

SIGNAL

BACKGROUND

=>Needendcap acceptance too

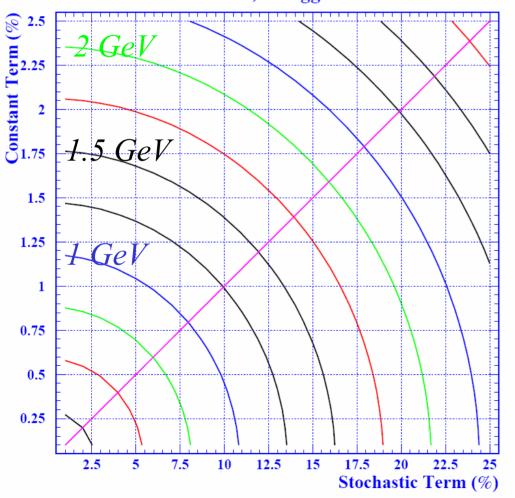
 $\sigma_{E}/E =$ $10\%/\sqrt{E(GeV)} \oplus 1\%$ Leads to


 $\sigma_m \approx 1.25 \ GeV.$

Mass resolution depends on $(a, E_{\gamma\gamma})$

 $a = |E_1 - E_2| / E_{\gamma\gamma} = \beta |\cos \theta^*|$

 $\sigma_m/m =$



At $\sqrt{s}=1$ TeV, the Higgs energy is modest (220 GeV average). WW fusion dominates.

ECAL Resolution effects on mH resolution in γγ channel

ECM=1 TeV, mHiggs=120 GeV

Contours of average mass resolution (0.25 GeV steps). Uses the $(a, E_{\gamma\gamma})$ distribution expected for Higgs events.

Given the modest Higgs energies, the stochastic term and constant term are of about equal importance on the relative scales displayed here.

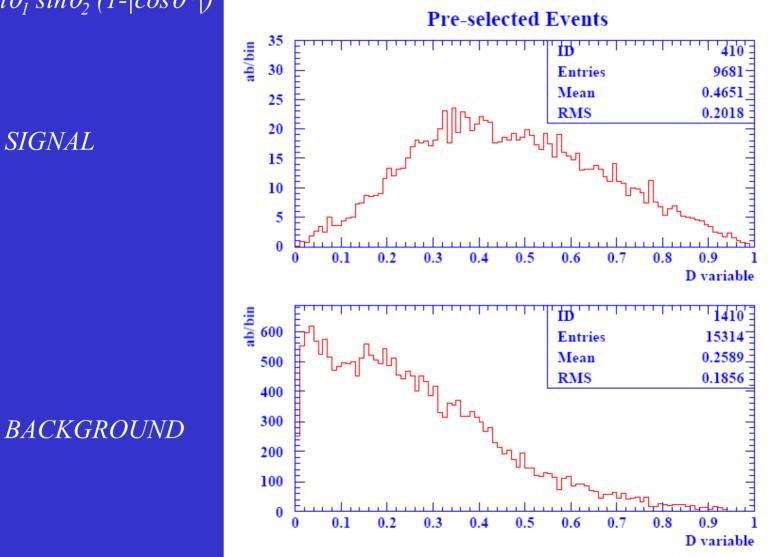
 $10\%/\sqrt{E} \oplus 1\% \approx 14\%/\sqrt{E} \approx 1.4\%$

Estimating analysis performance

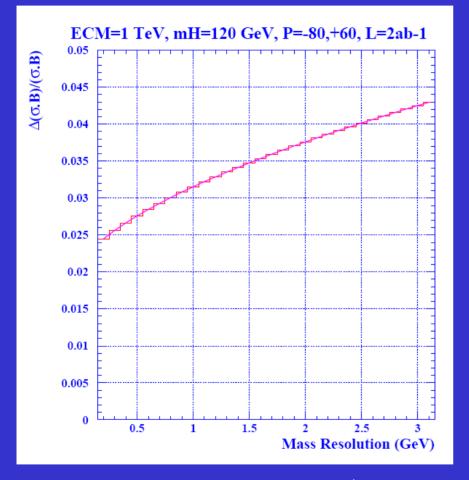
Use multi-channel method (see Favara, Pieri, hepex/9706016 and CMS TDR) to sub-divide the selected events into different analysis bins with varying s/b.

Use simple counting experiments within each analysis bin, with a mass window optimized for signal significance, assuming that background level can be measured from sidebands/predicted with negligible error.

Here use bins in D, where $D^2 \equiv \sin\theta_1 \sin\theta_2 (1 - |\cos\theta^*|)$ **X graham@heplx2:/raidslow/graham/work/htogg/Hgg_tests** [graham@heplx2 Hgg_tests]\$ more optimize_d_final.txt


Performance assuming average mass resolution of 1.25 GeV. Each bin uses an optimized cut in mass window width assuming a Gaussian signal. Uses polarized beams (80% e-L), (60% e+R) and 2 inv ab.

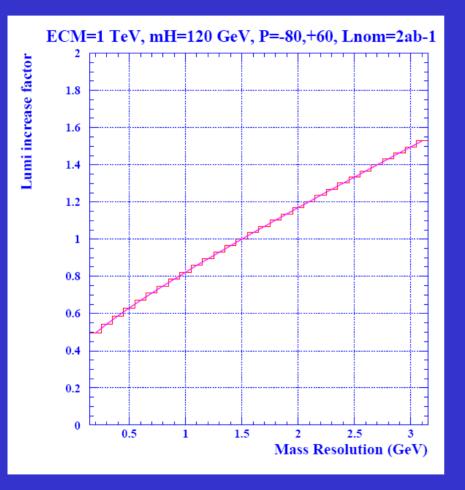
D-bin	+- DM (s	igma, GeV)	eff_rel	S	В	S/B	Significa	ance Error
[0.0,0.1]	1,42	1,775	0,844	41.4	913,9	0,045	1.34	0.747
[0,1,0,2]	1.46	1,825	0,856	129,4	925.0	0,140	3,98	0,251
[0,2,0,3]	1.53	1,9125	0,874	270.4	857.3	0,315	8.05	0,124
[0,3,0,4]	1.61	2,0125	0,893	369,8	690.0	0.536	11,36	0,088
[0,4,0,5]	1.68	2,1000	0,907	349,8	462.3	0,757	12,27	0,081
[0,5,0,6]	1.79	2,2375	0,927	324.4	267.6	1,212	13,33	0,075
[0,6,0,7]	1.85	2,3125	0,936	251.1	164.8	1,523	12,31	0,081
[0,7,0,8]	1.92	2,4000	0,945	175.0	91,2	1,919	10,72	0,093
[0.8,0.9]	1.96	2,4500	0,950	99.5	46.4	2,143	8,24	0,121
[0,9,1,0]	1.97	2,4625	0,951	30,6	13.8	2,221	4,59	0,218
SUMMED							29,92	0,0334


 $\frac{\text{[graham]}}{(from 27.8\sigma to 30.1\sigma)}$

D variable, where

 $D^2 \equiv \sin\theta_1 \sin\theta_2 \left(1 - |\cos\theta^*|\right)$

Physics Performance vs σ_m



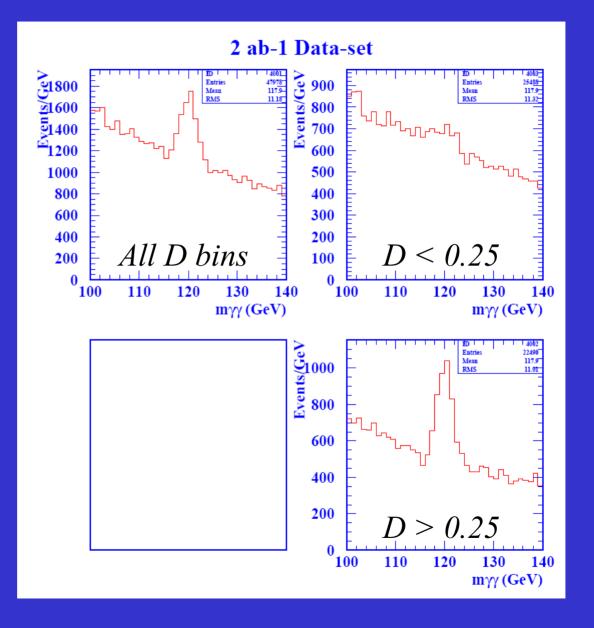
3.3% for nominal 10%/ $\sqrt{E \oplus 1\%}$

For very good mass resolution, the performance tends to the background free limit.

If the S/B was really poor in this channel, one would expect that the measurement error would worsen by a factor of $\sqrt{2}$ as the resolution degrades by a factor of 2 (ie. a factor of 2 in lumi equivalent).

ECAL Mass Resolution Dependence

Same plot as before, but this time the factor of increase in integrated lumi necessary to achieve the same performance as with $L=2ab^{-1}$ and $\sigma_m=1.5$ GeV is displayed.

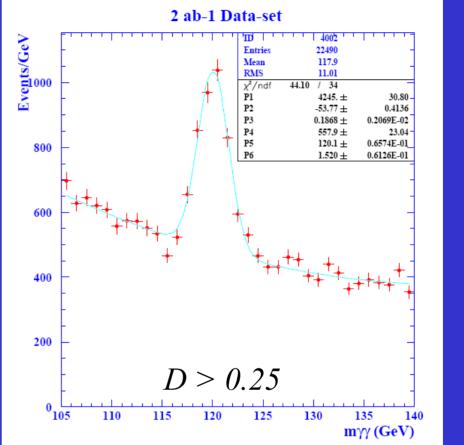

Assuming 500 fb⁻¹/yr,

0.5 = 2 years

1.0 = 4 years

1.5 = 6 years

Sample Experiment



Sanity checks of sensitivity including background for this "experiment".

Expect 27.8 σ measurement from counting experiment with known background.

Fit with 6 free parameters (with Gaussian signal shape) $\rightarrow 24.3 \sigma$.

Fit with signal and background shapes fixed, and S, B normalization floating $\rightarrow 27.2 \sigma$. (measure bkgd to 0.8%)

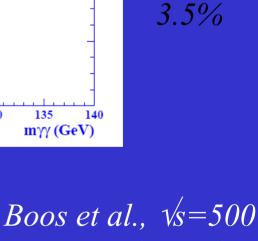
125 130 M_{vv} GeV

Events/1 GeV

80 - **b**

70

60


50

40

30

115

120

1900

signal

events

GeV unpolarized. 1 ab^{-1} , Sig = 6.1 σ 16.4%

$H \rightarrow \gamma \gamma$ conclusions

- Main conclusion
 - This is not a "high energy" constraint even if the best measurement is done at the highest \sqrt{s} .
 - Emphasizes forward acceptance at high \sqrt{s} .
 - Even here, there is room for multi-variate techniques to improve the sensitivity.
- If the competition to a PFA calorimeter can do no better than about 0.5 GeV in mass resolution, then achieving a mass resolution < 1.5 GeV would be advisable.
- (ie better than $16\%/\sqrt{E} \oplus 0\%$ or $12\%/\sqrt{E} \oplus 1.2\%$)
- Subsidiary conclusion: interpreting a $B_{\gamma\gamma}$ measurement without being above the new physics threshold is tough ...
- If this really is important, we should also be trying to measure $H \rightarrow Z \gamma$. (this may be quite a challenge for any calorimeter).

Backup Slides