Benchmarking Tracking & Vertexing

Andrei Nomerotski (Oxford) SiD Tracking Meeting, 7 December 2007

This Presentation

to discuss with tracking group

- Benchmarking physics processes
 - For Tracking
 - For Vertexing
- Status of Tracking tools
- Benchmarking and optimization for tracking

$H \rightarrow \mu\mu$ and $ee \rightarrow \mu\mu$

- Br H→ μμ
 - Studies by Haijun Yang and Keith Riles (U.Michigan)
 - Very sensitive to momentum resolution
- ee→ μμ
 - Energy reconstruction through luminosity weighted center-of mass energy. Need to know well momentum, angle and acceptance. Studied by Tim Barklow

ILC350, SDMar01, Z \rightarrow all, H \rightarrow µµ, 1000 fb⁻¹

Scalar Muon Mass $\sqrt{s} = 500 \, GeV$

$$e^+e^- \rightarrow \mu^+\mu^- \lambda^0 \lambda^0$$

- Two body decay of smuon
- Mass is measured by edges in muon energy spectrum
- Threshold scan

 \bullet

Muon Energy (GeV)

Soft Tracks

- ee \rightarrow stau stau $\rightarrow \tau\tau$ MET
- So called SUSY Point 3:
 ∆m=9 GeV → soft tracks
 - ∆m is allowed to be even ^e smaller

Soft Taus

- 85% of tau decays are single prongs
- Reconstruction of soft tracks is hard
- Tagging of taus is hard as well
 - Tag taus using Tracking/Vertexing
 - Use tau lifetime (=impact parameter) to tag?
 - -c tau = 87 micron

More Soft Jets and Tracks

- Similarly
 - $ee \rightarrow sbottom sbottom \rightarrow bb MET^{1}$
 - $ee \rightarrow stop stop \rightarrow cc MET$
- Tagging of soft bottom and charm is hard
 - Standard b-tagging eff starts to fall down at 20-30 GeV
 - At smaller energies: just collection of soft tracks from Bhadron decays – similar to Bphysics
 - Nobody really studies this yet

Forward Tracking

- Anomalous couplings in $ee \rightarrow bb$, $ee \rightarrow cc$
- Observable, FB asymmetry, is most sensitive in forward region

- Need to distinguish quark and antiquark

- Asymmetry is measured using jet vertex charge
 - Single tracks matter can flip the vertex charge

Vertexing

Benchmarking Vertexing

- bb and cc two fermion production
- Br H→bb, cc, tau tau
- ZHH (or ttbar) 6-jet final states need highly efficient *b*-tagging
 - significant heavy flavour multijet background
 - dense, collimated jets
- 3-prong vertexing for collimated tau decays

Flavour Identification Combine several variables into Neural Net

- - Vertex mass
 - Vertex momentum
 - Decay length
 - Decay length significance
 - Jet Probability
- Main contributors are Vertex Mass and Jet Probabilit

Vertex Charge

- Total charge of tracks associated with a secondary (+tertiary) vertex
 - Binary behaviour : a lost or wrongly assigned track changes the charge → every track is important
- LCFI Vertexing Package does flavour tagging and vertex charge

Optimization of Beampipe Radius

By S.Hillert in 2005

- Compared several beampipe radii
- Calculated corresponding 'luminosity factors' based on efficiency deterioration
 - Strong dependence: 70%
 more luminosity needed for 50
 GeV jets if R increased from
 15 mm to 25 mm
- Need R as small as possible

Tracking Tools

- I am not aware of any pattern recognition code that is ready to be use for analysis
 - I hope to learn more about it today
- Current options: Fast MC and PPFA
- PPFA has some tracking intelligence
 - Keep track of secondaries
 - Decides between reconstructable and un-reconstructable particles (pt cut, # of hits etc)
- FastMC and PPFA have usable error matrices
 - Tested with LCFI vertexing package (so far through reflection off Marlin and back to org.lcsim)
- It looks like PPFA could account for all material effects but without pattern recognition

Questions

- When will we have some usable pattern recognition?
- What do we need to optimize the Tracker? (well, which aspect of the Tracker, see next question)
 - fastMC?
 - PPFA?
 - Full MC

. . .

- What can be optimized without full MC?
 - Geometry? (acceptance, number of layers, barrel vs endcal split)
 - Various tracking algos and their combinations?
 - Tolerable bkg levels for pattern recognition?
- What do you have in mind for a set of subsystem benchmarking plots
 - Tracking efficiency, fake rate vs pt, angle
 - IP resolution vs pt, angle, IP
 - V0 reconstruction efficiency vs raduis, pt
 - V0 invariant mass vs pt