Upstream Polarimeter Scaled Field Scenarios

Jan. 8, 2008

Oleg Eyser DESY

Deepa Angal-Kalinin (Dec. 1, 2007):

- Consider a version of design with scaled field and three fixed dispersion ranges, with a fixed dispersion depending on the range.
- Let's say
- 20 mm in the baseline par. range of 100-250 GeV / beam
- 15 mm in 250 500 GeV / beam
- 50 mm in 45 100 GeV / beam

Energy Acceptance

Detector Acceptance

negative asymmetry covers more than 2 channels

Signal Compression

three fixed dispersions...

Normalization

so far: assumes perfect knowledge of Compton edge $\rightarrow A_N$

P=(79.79±0.36)% P=(79.58±0.41)%

A_N misalignment

A_N alignment from data

Conclusions

Three fixed dispersions might be ok. signal compression > signal loss outside acceptance ≈ worst case at 250 GeV

Four would be better. Normalization? Overlap? Max. dipole strength?

A_N alignment needs further careful studies. Extraction from data