

# R&D Plan: 'Engineering Design' Phase

- presentation to Saclay / Orsay

Marc Ross, Akira Yamamoto, Nick Walker

EDR Project Managers
GDE



#### **ED** Activity basis

- Minimal centralized funding
  - Most funding has strong institutional bias
    - FP7 and US-ART are exceptions
  - ED Progress relies on programs that benefit both ILC and institution
- Coordination and communication
  - Take advantage of pre-existing programs
  - Devise and describe mutually beneficial activities; up to a point
  - (must know what these are)
- A global project requires a transparent, open decision process
  - in-kind basis
  - Document: 'ILC Project Management Plan for the Engineering Design Phase'



#### Goal:

- An ILC Project plan with a cost estimate
  - Not to exceed RDR cost
  - Completed mid 2010 (Paris meeting)
    - (Now planning response to US/UK budget cuts)
- Based on technology developed for TESLA
  - First Priority support development of Baseline (RDR '07 → EDR '10)
  - But EDR includes and promotes longer term development which addresses
    - Cost
    - Performance
  - Development must be planned (and reviewed)



#### **EDR** Organization

- Three Project Managers
- 15 Technical Areas
  - Focus on cost-drivers (SCRF and Civil)
  - Inter-area boundaries not fully assigned
- Group Leadership with technical basis and regional balance
  - And global responsibility
- Boards for oversight (both internal and external - MAC)



#### **R&D** Priorities

- Superconducting RF High Gradient R&D
  - Cavity fabrication and processing
  - Up to vertical test
  - Determine process recipe and yield
- Conventional Facilities Design / Value Engineering
  - Cost reduction / overall design optimization
- Accelerator beam tests
  - Electron Cloud (CESR)
  - Beam Delivery (ATF/ATF2)
  - SCRF Linac high current operation (TTF, STF, ILCTA-NML)
- Development of cryomodule cost and plan
  - Based on the concepts of 'plug-compatibility' and 'single design plan'



#### Purpose of visit

- We (ILC EDR Project Managers) are deeply pleased with the prospect of Saclay / Orsay involvement in ILC EDR work
- We thank you for your invitation to visit and discuss
  - (Apologies Marc could not come)
- Today's presentation is strongly focused on SRF (cryomodule and cavity) issues
  - This has been the focus of our recent discussion
  - Please do not interpret this focus as a comment on non-SRF work now underway at Saclay / Orsay
  - Or as an indication that your participation would not be welcome in other EDR aspects



#### Background:

- 25.05.07 informal meeting (Nick, Guy, Olivier, mcr)
  - Suggested roles: Coupler, CM design (Orsay); BDS (Saclay)
- 18.09.07 Video meeting presentation covering ED Activity (appended)
  - Request to PM to strengthen role in SRF production; esp. coupler and CM
  - Consistent with XFEL role
- ILC PM pledge to visit and discuss Saclay / Orsay role in ED Phase
  - (In this context Saclay/Orsay = CEA/IN2P3)
  - ED Phase plans developed 06-07 / 2007
    - Before XFEL IK partnership plans developed



#### Since 18.09:

- 'Management Plan' released
  - (ALCPG07)
- Preliminary 'R&D Plan' distributed to FALC/RG + ILCSC
  - **(05.12)**
  - Details for top priority R&D items
  - Shows global participation (now to be amended!)
- 'Living Document' planning for 'release 2' underway
  - Release 2 will expand key CM issues; of interest today
  - (for ED Phase: CM does NOT include coupler)



#### CM Plan

#### From EU:

- Request and invite Saclay / Orsay engineering participation
  - (Also INFN and DESY)
  - Who?
- Basic plan:
  - 1. Develop 'modular' concept
  - 2. Develop 'interface' specification document
  - 3. Implement selection process between alternate subcomponents
  - 4. Consensus on 'single 'global' CM design for costing and production planning



#### Primary EDR CM Deliverable:

 "Development of a modular, or plug compatible, design concept to allow flexibility in construction planning. Specifically, plug compatible conditions to interface to other system/component should be well established to prepare for cryomodule manufacturing in industries in multiple regions."

 The EDR must include a global consensusbasis CM concept



#### Strategy

- Strategic comments (Carlo; 2007.12.05):
  - 1: The final scope of the WP on Cryomodule should be to produce a fully documented and engineered cryomodule design that can be considered as the baseline for the ILC. Regional differences should be accepted if equivalent and plug compatible. In case of a solution that turn out being superior in terms of cost and performance the 3 regions should accept this solution as a common reference.
    - (Italics/highlight from mcr)
    - ('a fully documented' ≡ a *single* fully document)



- 2: Alternatives should be treated in a way that does no disturb the main stream. In particular each alternative before being pursued and eventually integrated should be presented through a fully consistent document that indicates the foreseen advantages
- 3: The problem of documentation and standards is a sensitive one and strongly regional dependent. (ownership of documentation, interpretation of standards).



#### Work Packages

- Link deliverables to institutions
- Foundation of EDR plan
- How are these devised?
  - Drafted by Technical Area Group Leaders (e.g):
    - Cavity Production / Integration Hayano
    - Cryomodule Ohuchi/Carter
    - Main Linac Integration Adolphsen
    - Cryogenics Peterson
- Should respect institutional capabilities / interests and regional balance
- Work sharing coordinated by Project Managers



#### Cryomodule Team

| Cryomodules |                          |                                         |  |  |  |  |  |  |  |
|-------------|--------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| Americas    | US ANL, FNAL, Jlab, SLAC |                                         |  |  |  |  |  |  |  |
| Asia        | India                    | BARC, IUAC, RRCAT, TIFR, U. Delhi, VECC |  |  |  |  |  |  |  |
|             | Japan                    | KEK                                     |  |  |  |  |  |  |  |
|             |                          | CERN                                    |  |  |  |  |  |  |  |
| Europe      | France                   | Saclay                                  |  |  |  |  |  |  |  |
|             | Germany                  | DESY                                    |  |  |  |  |  |  |  |
|             | Italy                    | INFN                                    |  |  |  |  |  |  |  |

- IHEP?
- (reminder- coupler work listed elsewhere)

NJW2

Although the next page shows a table of the WPs, I think a graphic indicating the WPs for all the SRF area would be useful.

Especially as this will indicate where the Coupler WP is.

I will work on one tomorrow. If you like it you can use it.

Nicholas Walker, 1/8/2008

## CM work packages

| ID     | title                             | description                                                                                                                                                   |  |  |  |  |  |  |
|--------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1.3.1. | Standardization                   | Establish basic design parameters, plug compatible interface conditions, and high-pressure gas code (regulation) issues,                                      |  |  |  |  |  |  |
| 1.3.2. | Cooling pipe configuration        | Calculation of pressure drops, definition of the maximum pressure, cooling procedure, new piping on the module transverse cross section.                      |  |  |  |  |  |  |
| 1.3.3. | 5-K shield                        | Calculation of thermal-balance with or w/o 5 K-shield Trade-off with cryogenics operation cost.                                                               |  |  |  |  |  |  |
| 1.3.4. | Quadrupole Assembly               | Quadrupole location, support, installation procedure, alignment, vibration, current leads,                                                                    |  |  |  |  |  |  |
| 1.3.5. | Assembly Process                  | Study of Assembly procedure, fixtures, facilities, Study of inter-connect procedure,                                                                          |  |  |  |  |  |  |
| 1.3.6. | Engineering design with CAD       | Systematic engineering design using 2D/3D CAD, R&D for technically critical components such as Ti-SUS junction, vacuum components, etc.                       |  |  |  |  |  |  |
| 1.3.7. | Systematic performance evaluation | Establish performance testing process, procedures and define the test facility role during the mass production stage                                          |  |  |  |  |  |  |
| 1.3.8. | Transportation                    | Seek transportable cryomodule (region to region) Investigate transportation down to the tunnel through vertical shaft, with inclination (to save shaft size). |  |  |  |  |  |  |
| 1.3.9. | Cost/Industrialization            | Cost estimate based on BCD, and Industrialization effort (mass production and reducing the cost)                                                              |  |  |  |  |  |  |



#### CM Plan - Crude Timeline

Resource Centers:

The timeline shown on this slide is tentative and has not been approved by the GDE and involved institutions. Due in part to recent funding actions.

- KEK, Fermilab, Saclay, DESY, INFN, India, IHEP(?)
- Fermilab participation USFY08 minimal
  - Limited to 'synergy' with 3.9GHz TTF/Flash project and other 'generic' studies (?)
  - USFY09 under discussion (will know more in ~ 5 months)

#### – Proposal:

Interface document 2008

Component selection 2009 ←evaluation / community basis

• Design & test 2010

Costing & test 2011

For review until next GDE meeting, 03.03.2008



#### CM Plan - Modularity

- Critical list is short:
  - Cavity
  - Coupler
  - Tuner
    - Fast
    - Slow
  - (Each one, individually, technically in the 'Cavity / Integration' Technical Area Group
  - Also have cold mass, magnet, BPM, etc.
- See ALCPG07 material:
  - http://ilcagenda.linearcollider.org/materialDisplay.py?contribId= 256&sessionId=43&materialId=0&confld=1556
  - http://ilcagenda.linearcollider.org/getFile.py/access?contribId=2 56&sessionId=43&resId=0&materiaIId=slides&a mp;confId=1556



#### CM/Cavity 'selection' items

- One common design for costing purpose
- Choose:
  - Cavity
  - Coupler
  - Tuner
  - Interface
- Coupler example:
  - Diameter? (60mm?)
  - Tunable? (cost)
  - HV Bias? (cost)
  - Interlock / Diagnostics? (cost)
  - **?**
- Orsay cost study (due 03.2008 ?)



#### **Cavity Integration WP:**

- Similar aim: Develop a common, consensus-basis, for a cost and production model
- A separate Technical Area for cavity processing

| ID     | Title                    | description                                                                                                     |  |  |  |  |  |  |
|--------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1.2.1. | Tuner                    | Development of slow tuner for resonance stabilization and fast tuner for Lorentz detuning compensation          |  |  |  |  |  |  |
| 1.2.2. | Input Coupler            | Development of coupler designs, including evaluation of fixed/variable coupling, port diameter, heat load, etc. |  |  |  |  |  |  |
| 1.2.3. | Magnetic Shield          | Determination and test of magnetic shielding method, inside/outside He-vessel.                                  |  |  |  |  |  |  |
| 1.2.4. | He-Vessel                | Vessel material, bi-metallic junctions, Pressure Vessel regulation, and alignment method.                       |  |  |  |  |  |  |
| 1.2.5. | Integration/Test         | system integration into cryomodule and performance test                                                         |  |  |  |  |  |  |
| 1.2.6. | Cost & Industrialization | Cost estimate and pre-industrialization value engineering                                                       |  |  |  |  |  |  |



## **Cavity Integration**

|                                       | • | W<br>ar<br>R | ' → WP Coordination P Coordination is primarily an individual, not institutional responsibility epresentatives from Saclay from Orsay are ntatively listed as shown → Is this ok? | • | FNAL | JLAB | AC | LAL/Orsay : | Saclay | DESY | IHEP | Raja Ramana Centre | KEK .    |   |
|---------------------------------------|---|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|------|----|-------------|--------|------|------|--------------------|----------|---|
| 1.1                                   |   |              | avity Processing                                                                                                                                                                  |   | Ĺ    | 5    | S  | LA          | Sa     | GL   | Ξ    | Ra                 | <u>X</u> |   |
|                                       |   |              |                                                                                                                                                                                   |   |      |      |    |             |        |      |      |                    |          | 4 |
| 1.1.1                                 |   |              | Gradient performance                                                                                                                                                              |   | •    | •    |    |             |        | C    | •    | •                  | •        |   |
| 1.1.2                                 |   |              | Fabrication Specification                                                                                                                                                         |   | •    |      |    |             |        | C    |      |                    | •        |   |
| 1.1.3                                 |   |              | Process Specification                                                                                                                                                             |   | •    |      |    |             |        | C    |      |                    | •        | 1 |
| 1.1.4                                 |   |              | Cavity Design Specification                                                                                                                                                       |   | •    |      |    |             |        | C    |      |                    | •        | 1 |
| 1.2 Cavity Production and Integration |   |              |                                                                                                                                                                                   |   |      |      |    |             |        |      |      | GL                 | ĺ        |   |
| 1.2.1                                 |   |              | Tuner NJW5                                                                                                                                                                        |   | •    |      |    |             | C      |      |      |                    | <b>•</b> | 1 |
| 1.2.2                                 |   |              | Input Coupler                                                                                                                                                                     |   | •    |      | •  | C           |        |      |      |                    | <b>♦</b> | 1 |
| 1.2.3                                 |   |              | Magnetic Shield                                                                                                                                                                   |   | •    |      |    |             |        |      |      |                    | C        |   |
| 1.2.4                                 |   |              | He- Vessel                                                                                                                                                                        |   | С    |      |    |             |        |      |      |                    | <b>*</b> | 1 |
| 1.2.5                                 |   | $\top$       | Integration / Test                                                                                                                                                                |   | •    |      |    |             |        |      |      |                    | C        |   |
| 1.2.6                                 |   | $^{\dagger}$ | Cost & Industrialization                                                                                                                                                          |   | C    |      |    |             |        |      |      |                    | <b>♦</b> | 1 |

#### NJW5

I always forget to ask about this. I am suprised that Saclay is coordinating the tuner. I think this is much more likely a role that Carlo (INFN) will want to do. For the XFEL, Saclay effectively said it was not interested in the tuner.

Nicholas Walker, 1/8/2008



#### **Concluding Remarks**

- Saclay / Orsay collaboration extremely welcome
  - adding strength to the ILC European Region and the GDE in general
  - continuing and strengthening the long history of French collaboration in the SRF linear collider
    - (TTF, TESLA, now ILC)
- Recognise that the XFEL Project is the corner-stone of the European contribution to ILC
  - and the important and expanding role of Saclay / Orsay in the linac construction.
- Experience in BDS and Positron Source is also noted and appreciated
  - however these are lower but nonetheless important priorities.
- ED Phase Management key interest is in the SRF
  - Identified priorities: Gradient, Cryomodule Design
- What can XFEL (and therefore Saclay / Orsay) contribute directly to the ILC during the ILC ED phase?
  - Indirect contribution is obvious
  - Important to define during this meeting



#### XFEL and the ILC

- XFEL is recognized as a mature baseline technology
  - A fundamentally European technology
- Mass production information will be critical input
  - Design for manufacture
  - Feedback from industry
  - Cost information!
- Mass production of 101 XFEL Cryomodules represents a major "dataset" for ILC that is unmatched in the other regions.
  - The ILC must maximize the benefit
- Importance to ILC goes beyond ED Phase
  - Mass production infrastructures at Saclay / Orsay together with gained in-house expertise and experience will form a corner-stone for any European in-kind contribution to the ILC
- The GDE will give (and take!) credit for all the excellent XFEL SRF linac work
  - Despite potential design differences.



## XFEL and the ILC (2)

- For the ILC ED Phase, we must understand the process in an international context
  - Interaction of Saclay / Orsay groups (together with DESY and INFN) with equivalent groups around the World working on ILC
    - KEK, FNAL,..
  - Understanding roles and responsibilities, given the constraints of the XFEL construction commitments
- XFEL is where we are today, but we must push harder for the ILC
  - Gradient
  - Cost-driven design (further cost reductions)
- Impact of in-kind contributions and distributed manufacture must be taken into account
  - Regional variants in CM design "Plug Compatibility"
  - Evolving designs to make best (cost effective) use of innovative ideas
- Need to understand how strongly XFEL-based groups will interact and contribute to evolving ILC R&D across the GDE
  - Some flexibility is desirable



## Four Critical Points for Discussion Today and Tomorrow

- Communication
  - How to communicate and transfer critical XFEL production experience to the global ILC activity
- Participation
  - How to actively participate in the global design evolution of the ILC cryomodule (responsibility), while maintaining the XFEL commitment.
- Planning
  - How to help plan for ILC-like scale massproduction, including expected design evolution and regional variants
    - The ILC cryomodule will be an evolution from the XFEL cryomodule
- Costing
  - Providing invaluable input into the ILC cost models
  - Helping to produce 'Project Implementation' models for a future in-kind based ILC construction project.