LP1 study at Asia

Sugiyama
LC-TPC @Asia
KEK,TUAT,Kogakuin,Kinki,Saga
Tsinghua, Mindanao
GEM TPC panel
GEM gating

Large Prototype 1

GEM-TPC panel
fill $24 \mathrm{~cm} \times 17 \mathrm{~cm}$ pieces this size might be reasonable for GEM price, replaceability

Pre-prototype study has been done for LP1

LP1 EP design fixed
\downarrow

Conceptual design(Pre-prototype)

Can we stretch GEM ?

mounting(stretch) mechanism

frame: top \& bottom frame.
no side frame

PC Board (Pads \& connectors)@pre-proto

pad size $\sim 1.1 \mathrm{~mm} \times 5.6 \mathrm{~mm}$
~3 times wider than diff@GEMs 20 pad rows (3680 pads) staggered pad geom.

0.5 mm

6 layers PCB one GND layer
connector space is reduced by
back frame (metal structure to EP lib)

HV line shorts to GND !!
routing is important !!

This will be fixed in Prototype PCB

Test result of Pre-Prototype@LCWS07

Gain variation over panel? charge up on insulator?
shape2

nus)

After LCWS07 we've tried to improve setup of test box but.......

GEM was broken
after some modifications every time \qquad
Work under dirty condition cause in fatal damage to GEM reported from the RIKEN group
Cleanness of working environment seems to be important !!!

Clean booth was introduced

PC Board for LP1

PCB design/prod. at China (Tsinghua Univ.)
28 pad-raws $\times 176$ (192) pads/raw for inner(outer) 14 raws
$\sim 1.2 \times 5.4 \mathrm{~mm} 2$ pads
routing design will be finished soon

Others designs are same as the pre-prototype
GEM + assembly parts : almost ready now PCB will be ready @ February

${ }^{\text {test } w / e l e c . ~}$
Great! if a few LP1 electronics is available@remote site
Gate system may not be available @ the beginning of beam test

GEM Gating

Our GEM scheme is based on a existing of extra gating system

GEM

Working gate system is necessary
good electron transmission is necessary
in order to achieve this requirement we have studied GEM gating by the simulation and
very thin GEM with wide holes may provide a reasonable results @low VGEM operation

Required Gate GEM performance @LC-TPC

Effect of Ed @12.5 um thick GEM

\author{

drift Et $300 \mathrm{~V} / \mathrm{cm}$
 trans. Ed
 | \square | $50 \mathrm{~V} / \mathrm{cm}$ |
| :--- | :--- |
| \ldots | $150 \mathrm{~V} / \mathrm{cm}$ |
 Improvement
 comes from Ed/Eh ratio!

}

Large hole aperture
Thin foil(insulator + metal) Straight hole(n.c.)
will achieve 70% transmission @LC-Tb 70\% transmission @LC-TPC condition transmission

Can we make this kind of GEM??

However simulation must be justified!

Sauli's results are reproduced by simulation
But we are not sure all behavior can be evaluated by the simulation.

We need to compare measurements and simulations under various conditions in order to believe sim. results.

Measurement of electron Transmission

Systematic study of electron transmission:

Method to measure transmission

Fe55

($3 \times 3 \mathrm{~cm}$)

+ Pre/post + ADC

Measured Transmission

3 kinds of GEM

thickness	size
standard:	50 um
thin $: ~ 250 \mathrm{um}$	
thin-wide:	25um
70um	

Magnetic field
0 Tesla
1 Tesla @ KEK cryo. center

transmission is getting better as foil thickness becomes thin as hole size becomes larger w/wo B field

These are what we expected from the simulation. 4
BUT

Comparison to simulation

$B=0 T$

$B=1 T$

OT case
Large discrepancy even in behavior

1 T case results are similar each other

B filed doesn't change transmission in measuremts

SUMMARY

GEM panel production is on going

GATE GEM study has been started

Gate behavior was reproduced by measurements@B=1T but not for B=OT
Why ??? under study
Ar:CO2 data is necessary to confirm Sauli's result
(not done yet)

If someone will measure transmission under $B=5$ T@DESY using our GATE GEM, it would be great

Also studying possibilities to produce 12.5 um-thick wide-hole GEM

