Some Beam Test Results for a Single Bunch Dif-Sum BPM with Beam-Signal-Based Clock (part 1)

A. Kalinin

Accelerator Science and Technology Centre, Daresbury Laboratory, UK

> The FONT Meeting Oxford, January 11, 2008

Test Block Diagram

Calibration: two BPMs are connected in parallel to the strip line pickup #10 (as shown).

Characterisation and Resolution measurement: a signal of one strip line is split into two BPM inputs.

Characterisation & Calibration: oscilloscope TDS7154B 1.5GHz Resolution measurement: ADC GFT6003 14bit 2Gsamples/s

1. Balancing of the Dif-Sum BPM inputs. The Hybrid Junction outputs. Red: the sum signal (=1); black: the signals for intentionally unbalanced inputs; blue: a residue of balancing ($\sim 1/200$).

The Amplifiers outputs. An attenuator 6dB at the sum input.

The Dif-Sum BPM outputs.

Red: the sum signal; black, blue, brown: the signals for 'displacement' +5dB, 0 and -5dB. The dif gain is about 10dB higher than the sum gain.

The BPM signals at GFT6004

The resolution data recorded:

- The 071808 Shift: three arrays 40 to 60 shots for threshold 60mV and Dif gain 10dB.
- The 071218 Shift: total nine arrays 60 to 120 shots for threshold 300mV, including six arrays for Dif Gain 10dB (one of them for ghost bunch) and three arrays for Dif Gain 14dB.

The resolution data processed:

- The 071808 Shift: one array (Raw 100). Resolution was calculated for the three cases: the upstream max, the saddle and the downstream max of the Dif Out pulses.
- The 071218 Shift: five arrays. Resolution was calculated for the saddles. Two arrays (1 and 5), and one array (3) for ghost bunch as well are for Dif Gain 10dB, two arrays (7 and 9) are for Dif Gain 14dB.
- From each array, thirty samples (1 to 30) are used.
- Fliers if any, are not removed.

- Bunch intensity is $\geq 5.10^{9}$ e.
- The pickup signal is deliberately attenuated 7dB. So, the resolution obtained is for ≥2.10^9e, or 0.3nC.
- x[mm]=(Dif/Sum)·M[mm]
- The scale coefficient M measured with ZH4X and ATF BPM10 is about 2.6mm. A coefficient estimated from Jitter BPM (0.85mm for Dif Gain 20dB) is 2.7mm (Dif Gain 10dB). For the resolution calculation here the coefficient is taken M1=3mm for Dif Gain 10dB and M2=0.63-3mm for Dif Gain 14dB.
- No interpolation is used. For saddle the minimal reading is taken, for upstream/ downstream maximums the max is taken. For synchronous sampling this would be equivalent to ADC clock jitter within ±1/4ns.

The data sheet

An ASCII array:

Date: 18/12/2007 at 14:18:24 Sampling rate: 200000000 Hz Total Number of Samples: 100

6.500000e-09	-0.013916
7.000000e-09	-0.014771
7.500000e-09	-0.016846
8.000000e-09	-0.020630
8.500000e-09	-0.025269
9.000000e-09	-0.031616
9.500000e-09	-0.032227
1.000000e-08	-0.023071
1.050000e-08	-0.005371
1.100000e-08	0.012817
1.150000e-08	0.023560
1.200000e-08	0.022095
1.250000e-08	0.013916
1.300000e-08	0.009521
1.350000e-08	0.015015
1.400000e-08	0.024658
1.450000e-08	0.025024
1.500000e-08	0.007568
1.550000e-08-	0.018066
1.600000e-08	-0.034790
1.650000e-08	-0.034424
1.700000e-08	-0.02246
1.750000e-08	-0.011963
1.800000e-08	-0.008301
1.850000e-08	-0.007690
1.900000e-08	-0.013672

The data sheet for 30 arrays:

/	1	S	D,V	$0 = S_0 - \overline{20}$	3 1/2 -	2	S_{Σ}, \vee	Σ=S= P,	071214	SADDLE
-	0.01	5	ADDLE	20 = - 13.45	0.01993	5	28	P=949mV	DIN	3mm. 2 pm
•	0.0	50	+ 9.888	23,338	T. noorn	29	- 0.365	1314	0.01776	53,3
		121	9,277	22,727		16	372	1321	1720	51.6
	0.01	123	9.644	23.094	0.01020	0	410	1359	1699	51.0
	0.0	21	8.911	22,361		1	358	1307	1711	51.3
		49	8.423	21.873	0.0 10 21	28	354	1303	1679	50.4
	0.01	50	9.644	23.094	0.02400	29	386	1335	1730	51.9
0	0.01	176	10.742	24.192	10.02109	0.	366	1315	1840	55.2
2	0.01	13	9.033	22.483	0,01051	1	360	1309	17-18	51.5
10	0,01	94	9,521	22,971	0,01000	8	401	1350	1702	51.0
0	\$.94	49	10.498	23.948	0.0.2006	28	416	1365	17 54	52.6
12	0.014	53	11.108	24,558	0.02033	6	447	1396	1759	52.8
14	0.016	50	10,010	23.460	9,92444	29	427	1376	1705	51.1
44	0.0,1	175	11.353	24.803	9.41942	5	462	1411	1758	52,7
-22-	0.04	12	10,864	29.314	0.0.2002		449	1398	1739	52.2
	0.020	49	11.963	25,413	1 1 1046	28	442	. 1391	1827	54.8
	1.0.0		10 864	24.314	10.02036	10	438	1387	1753	52.6

The shift 071208	. The threshold is 60mV.
------------------	--------------------------

upstream maximum	saddle	downstream maximum
1.60µm (published)	1.34µm	2.60µm

The 071218 shift. The threshold is 300mV. Saddle.

Dif Gain		10dB	14dB		
array	1	3	5	7	9
	1.86µm		1.83µm	1.12µm	1.05µm
ghost		1.55µm			
bunch					

Conclusions:

- 1. As it was expected for the intensity given, the BPM resolution is decided by the (SD + ADC Driver + ADC) noise. So, increase of the Dif Gain proportionally improves the resolution.
- 2. The threshold value looks to be not critical.
- 3. A ghost bunch does not affect the resolution (provided the beam is near the pickup center).

Nearest tasks:

- 1. Complete processing. Use Fourier Interpolation to exclude the $\pm 1/4$ ns jitter.
- 2. See a 'position' mean drift along the array and its correlation with the bunch intensity, a ghost bunch, etc.
- 3. Process the Multiplex BPM data.
- 4. Using a signal imitating the pickup signal, measure the resolution by a single sample ADC CS328A.