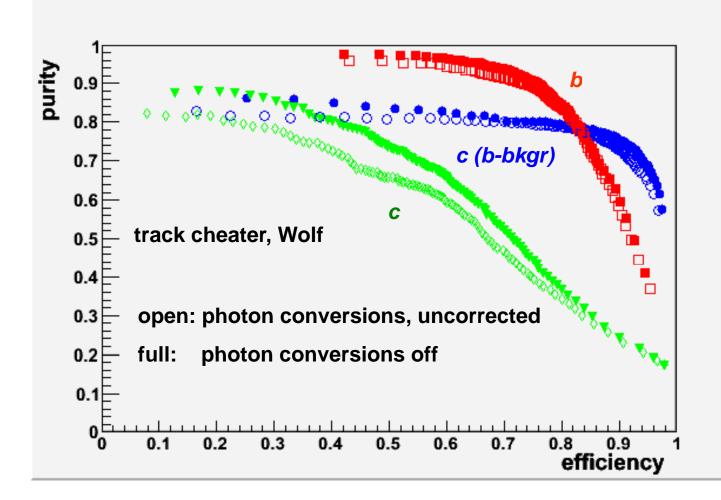
ILD optimisation meeting, 30 January 2008

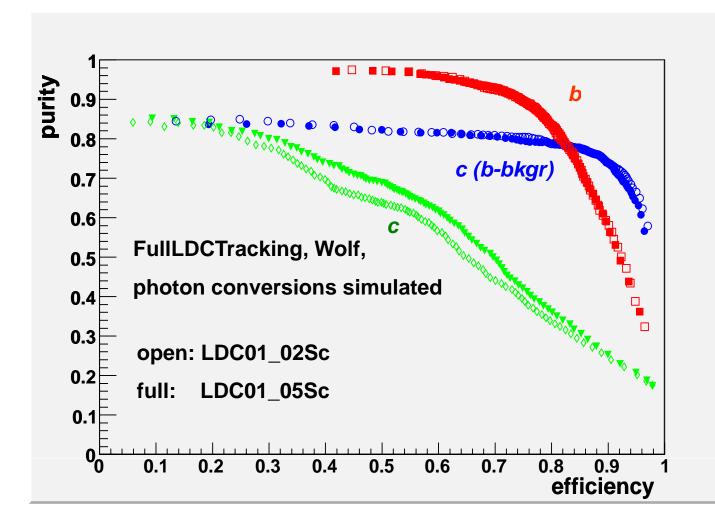

LCFI Vertex – ready for mass reconstruction?

- * performance checks with new code / geometries
- In the second status of "default configuration" of LCFI Vertex
- conclusion and questions

Sonja Hillert (Oxford)

Status of autumn 2007

below: results obtained with track cheater, Wolf, old geometry (LDC01_02Sc or older ?)
 during validation phase photon conversions switched off at GEANT level

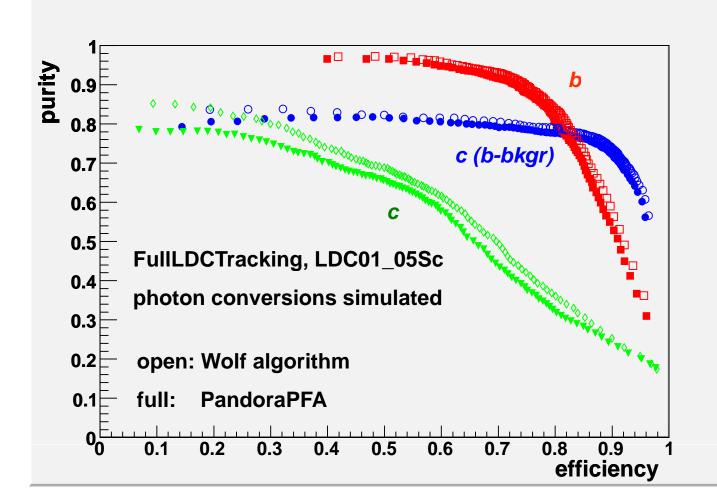


Note: this switch also affects CAL showers → <u>DON'T WANT TO DO</u> <u>THIS FOR ANY "REAL"</u> <u>STUDY</u>

- c-tag degrades when photon conversions simulated;
- this difference is less
 pronounced for
 FullLDCTracking

Current Status: detector comparison

in the meantime, have moved to FullLDCTracking: consistent performance
 ... and to detector version LDC01_05Sc: improvement over LDC01_02Sc



> new detector gives better result also for PandoraPFA

(note: for Pandora and LDC01_02Sc have not been using correct calibration; but expect that at least part of the improvement truly is due to the detector)

Current Status: PFA comparison

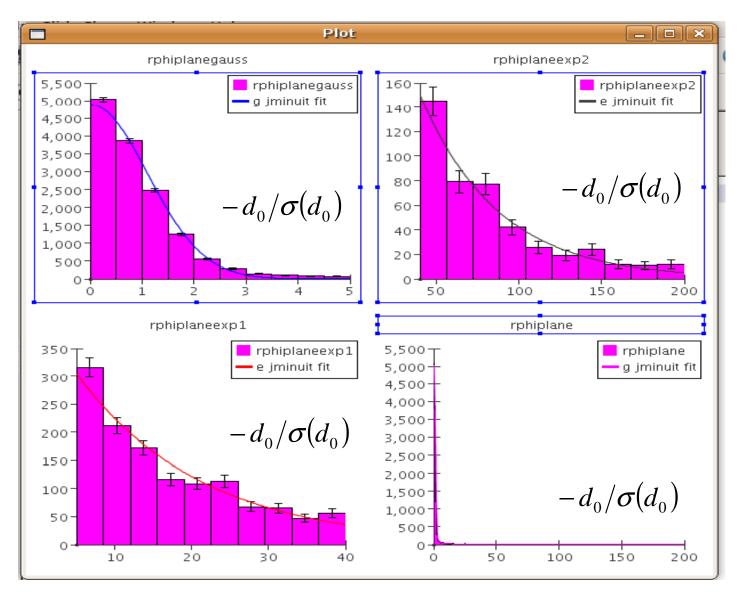
comparing Wolf + LCFIVertex to PandoraPFA (new version, calib consts) + LCFIVertex
 the combination with Wolf gives better flavour tag – looking into possible reasons

- track selection is known to have potentially a large effect:
- does Pandora remove tracks that pass Wolf?
- if so, would it be possible to include them without impairing PFA performance?

Flavour tag: parameters for joint probability

> improvement to calculation of one of the inputs for the flavour tag-NN:

> probability that a track from primary vertex has impact parameter significance > b/σ_b is


$$P_i = \frac{\int_{b/\sigma_b}^{\infty} f(x) \, dx}{\int_0^{\infty} f(x) \, dx}$$

> the symmetric function f(x) needs to be obtained from a fit of the negative side of the impact parameter distribution (done separately for R- ϕ and z);

- First release of the Vertex Package uses hard coded parameterisation obtained from fast MC
- > Erik Devetak is working on a module to obtain parameters properly from a fit
- > joint probability (flavour tag input) for ensemble of tracks to come from primary vertex is

$$P_J = y \sum_{m=0}^{N-1} \frac{(-\ln y)^m}{m!}$$

Parameters for joint probability: status

fit macro written, and tested;

low-statistics run
 yields parameters
 that differ up to
 20% from current
 values

effect on flavour tag purity vs efficiency under study

Plans for default configuration as of autumn 07

- > in autumn, aimed at to complete the following by January:
- correction procedure for photon conversions based on reconstructed information
- correction procedure for K-shorts and Lambdas using reconstructed information
- proper correction for hadronic interactions
- ensure compatibility of LDCtracking, PandoraPFA, LCFIVertex (MOKKA / GEAR issues)
- parameter tuning with full MC and reconstruction:
 - optimise track selection for ZVRES and IP-fit based on distributions of cut variables
 - tune ZVRES parameters, using ZVRES diagnostic plots & table
 - optimise track selection for flavour tag
 - tune flavour tag parameters, in particular: parameters for joint probability calculation
- training of new neural nets using full MC, reconstruction and optimised code parameters

> Not as much progress made, as we hoped – we knew these plans were ambitious

Current Vertex Package track selection

✓ : cut enabled

X : cut disabled

Description	xml parameter names	Code default	ipfit.xml	zvres.xml	fti.xml
Cut on χ^2 /ndf of track fit	a1_Chi2OverDOFEnable a2_Chi2OverDOFCutLowerThan a3_Chi2OverDOFCutValue	10	10 X	10 X	10 X
Cut on d0 (R¢ impact parameter)	b1_D0Enable b2_D0CutLowerThan b3_D0CutValue	20	50 √ (mm)	10 ✓ (mm)	20 √ (mm)
Cut on d0 error	c1_D0ErrEnable c2_D0ErrCutLowerThan c3_D0ErrCutValue	0.25	0.025 X (mm)	0.25 √ (mm)	0.025 X (mm)
Cut on z impact parameter	d1_Z0Enable d2_Z0CutLowerThan d3_Z0CutValue	20	50 √ (mm)	20 √ (mm)	20 √ (mm)
Cut on error on z imp param	e1_Z0ErrEnable e2_Z0ErrCutLowerThan e3_Z0ErrCutValue	0.25	0.025 X (mm)	0.025 X (mm)	0.025 X (mm)
Cut on pT of track	f1_PTEnable f2_PTCutLowerThan f3_PTCutValue	0.1	0.1 X (GeV/c)	0.1 √ (GeV/c)	0.1 √ (GeV/c)
cut on Ks, Λ decay tracks	h1_MCPIDEnable h2_CutPIDS h3_MonteCarloLCRelationCollection	0	X	✓ +- 310 +- 3122	√ +- 310 +- 3122

plus additional cuts on the number of hits in the vertex detector used in zvres.xml, fti.xml

ZVTOP algorithm

- Find all maxima for $f_i(\mathbf{r}) f_j(\mathbf{r})$ with i, j = 0...N and collect spatial points \mathbf{r}_{ij} for cases of good vertex fit, $\chi^2_{i,j} < X_0$ TwoTrackCut
- Search in 3D for maxima in $V(\mathbf{r})$ near each such \mathbf{r}_{ij}
- If two such maxima fail 'resolubility criterion'

$$\frac{\min\{V(\mathbf{r}): \mathbf{r} \in \mathbf{r_1} + \alpha(\mathbf{r_2} - \mathbf{r_1}), 0 \le \alpha \le 1\}}{\min\{V(\mathbf{r_1}), V(\mathbf{r_2})\}} \swarrow \mathbf{R_0} \qquad \mathbf{R_0} \qquad \mathbf{r_1} \qquad \mathbf{r_2}$$

they are merged together

Spatially resolved clusters of V(r) maxima form candidate vertices

- Track to vertex association ambiguities are decided according to largest V(**r**) after χ^2_i (X₀) trimming TrackTrimCut
- Vertex that includes the IP ellipsoid is called the Primary

What's realistically possible in time for mass recⁿ?

- > We have checked that LCFIVertex runs with full tracking, both PFAs, LDC01_05Sc
- > We have the fit macro for joint prob' optimisation and the diagnostic tools in place
- > We do not yet have a set of Vertex Package parameters optimised for MOKKA/LDC
- We are currently investigating, if updating the joint probability parameters only already gives an improvement in performance – will know this in a week from now
- It does no longer seem realistic to aim for completion of this optimisation before the start of mass reconstruction, so would like to ask:
 - What the currently envisaged start date for mass reconstruction is
 - If there could be 2 iterations of centrally running LCFIVertex: the first at the same time as for the other packages, the second at a later stage when parameters tuning is complete
 - which detector model will initially be used for mass production / reconstruction (NOTE: since Vertex Package parameter optimisation quite involved, will need to run with the same configuration for different detector models)