

ECAL Alignment with *e* and π data

D. BOUMEDIENE LPC Clermont-Ferrand CALICE meeting – Argonne 19/03/2008

Outlook

Introduction

- Alignment with *e* data (*y* dimension)
 - Method
 - Results
- Alignment with π data (*x* and *y* dim.)
 - Method
 - Results and comparisons
- Conclusion

Alignment with *e*⁻ data

- Aim : To measure the position of the layers w. r. t. the first layer
 - Used data: all 2006 *e* runs
 - Event selection + Fiducial volume (\rightarrow no lateral leakage and energy flat beam)

- Method :
 - Measurement of the relative position of the guard rings relatively to the first layer.
 - Guard ring positions extracted from the energy profile.
 - Energy profile :

Energy in a layer = f^{ct} (track position on first layer)

• Electron position on the first layer given by the tracking.

Fit of the guard rings positions

Usual Gaussian model

The typical precision on the gap centre is 0.1mm / sample
19/03/2008 D. BOUMEDIENE | CALICE meeting, ANL

Exemple : the 20 GeV sample of aug. $26^{\text{th}} 2006$

• Two remarks :

- The direction can be recontructed from the first 10 layers
- There is a systematic shift between the two layers of a given slab

Exemple : the 20 GeV sample of aug. $26^{\text{th}} 2006$

After subtraction of the direction : layers alignment

Mean positions over all 2006 data

Remarks :

- Not large misalignment.
- Systematic shift between two layers of the same slab (with the exception of the 9th slab) confirmed
- Can be refined by splitting the measurement over different periods (alignment per run / per day)

19/03/2008

On each slab

Layer positions per day (ly # 1 to 8)

Alignment per day (ly # 9 to 17)

19/03/2008

Example : alignment per run. Ly #9 to 17

19/03/2008

Mean g	positions	over	all
2006 0	lata		

Detailed numbers and figures are given in CALICE Int. Note CIN-003

Precision better than

30 μm in first stack 100 μm in second stack 550 μm in third stack

	Layer number	Layer position (mm)	Layer position (mm)
·		(no direction error)	(with direction error)
	0	0.035 ± 0.036	0.035 ± 0.036
1	1	-0.026 ± 0.032	-0.026 ± 0.032
	2	-0.008 ± 0.029	-0.008 ± 0.029
	3	0.053 ± 0.023	0.053 ± 0.024
	4	-0.072 ± 0.023	-0.072 ± 0.025
	5	0.054 ± 0.020	0.054 ± 0.022
	6	-0.143 ± 0.022	-0.143 ± 0.027
	7	-0.032 ± 0.019	0.032 ± 0.025
	8	-0.074 ± 0.020	-0.074 ± 0.029
	9	0.092 ± 0.017	0.092 ± 0.028
	10	-0.118 ± 0.019	-0.119 ± 0.034
	11	0.014 ± 0.014	0.014 ± 0.033
	12	0.177 ± 0.017	0.178 ± 0.039
	13	0.232 ± 0.016	0.241 ± 0.040
	14	-0.232 ± 0.017	-0.219 ± 0.047
	15	-0.153 ± 0.016	-0.109 ± 0.047
	16	-0.126 ± 0.025	-0.056 ± 0.056
	17	-0.369 ± 0.027	-0.321 ± 0.058
	18	-0.505 ± 0.038	-0.444 ± 0.070
	19	-0.403 ± 0.039	-0.323 ± 0.072
	20	-0.39 ± 0.078	-0.340 ± 0.104
	21	-0.564 ± 0.074	-0.552 ± 0.104
	22	-1.048 ± 0.150	-1.012 ± 0.171
	23	-0.953 ± 0.144	-0.917 ± 0.166
	24	-0.539 ± 0.245	-0.531 ± 0.278
	25	-1.105 ± 0.295	-1.102 ± 0.309
	26	-1.218 ± 0.531	-1.251 ± 0.543

Alignment with π data

- Aim : measurement of the *x* and *y* position of the layers w. r. t. the first layer
 - Used data: 2006 π runs (6, 17, 30, 40 and 50 GeV)
 - Event selection :
 - Cut on a "MIP χ^2 " (event / event basis)
 - Consider layers with *N*Hits_{layer} < 5 (layer / layer basis)
- Method :
 - Measurement of the relative position of the guard rings relatively to the first layer.
 - Guard ring positions extracted from the profile of the number of hits in the layer vs. the track position on first layer (*cf. David WARD talk Ph. Meeting 31/10/07*)
 - Electron position on the first layer given by the tracking.

Nb hits vs. track position

19/03/2008

Mean *y* positions from 2006 π data

Layers alignement in Y - All energies 0.8 Alignement shift (mm) 0.6 0.4 4 0.2 4 Δ Λ -(4 Δ Å Ł ٨ -0.2 Å -0.4 Δ ¥ 4 -0.6 -0<u>.8</u> -200 -180 -160 -120 -100 -80 -60 -20 -140 -40 Layer position (mm) Précision better than 30 µm in first stack $50 \ \mu m$ in second stack $80 \,\mu m$ in third stack

Mean *y* positions from 2006 π data

Layer number	Layer position (mm)		
0	0.0215 ± 0.0147	15	-0.0333 ± 0.0364
1	0.0424 ± 0.0151	16	-0.0773 ± 0.0401
2	-0.0144 ± 0.0193	17	-0.173 ± 0.0418
3	0.0561 ± 0.0174	18	-0.215 ± 0.0441
4	$c = 0.208 \pm 0.0198$	19	-0.06 ± 0.0456
5	0.0194 ± 0.0208	20	-0.359 ± 0.0508
6	-0.0621 ± 0.0212	21	-0.167 ± 0.0519
7	0.0252 ± 0.0207	22	-0.196 ± 0.056
8	-0.085 ± 0.0228	23	-0.264 ± 0.0569
9	0.199 ± 0.0246	24	-0.228 ± 0.0606
10	0.00577 ± 0.0275	25	-0.326 ± 0.0631
11	0.0232 ± 0.0282	26	-0.266 ± 0.0678
12	0.0435 ± 0.032	27	-0.164 ± 0.0697
13	0.084 ± 0.038	28	-0.129 ± 0.0741
14	-0.109 ± 0.0353	29	-0.36 ± 0.0765

Comparison with e⁻ based alignment :

- Same precision in the first stack
- 2 times better in the second stack
- 6 times better in the third stack
- Position of layers 27 to 29 accessible

But ...

Mean *y* positions over different 2006 π data

• ly4 & 10 : to be understood

• Need to be refined : position per day

 π data

e⁻ data

On each slab (π samples)

Shift = (-0.13±0.02)mm @ 30GeV (-0.11±0.02)mm @ 40GeV (-0.12±0.02)mm @ 50GeV

• The same effect is observed using independent π samples

• Compatible with the shift observed using *e*⁻ samples

Mean x positions over 40 GeV π data

The nominal shifts of 2.5mm/slab and 1.3mm layer/layer were subtracted

Mean value of *x* positions from 2006 π data

Layer number	Layer position (mm)	6, 30 and 40GeV π	
0	0.115 ± 0.0313		
1	-0.13 ± 0.0267		
2	0.0905 ± 0.03	16	0.334 ± 0.0665
3	-0.137 ± 0.0269	17	0.416 ± 0.0678
4	0.06 ± 0.0309	18	0.399 ± 0.0751
5	0.0665 ± 0.033	19	0.393 ± 0.0761
6	0.238 ± 0.0463	20	1.02 ± 0.0884
7	0.0323 ± 0.0333	21	1.13 ± 0.086
8	-0.00459 ± 0.0384	22	1.19 ± 0.0966
9	-0.119 ± 0.0431	23	1.09 ± 0.0959
10	0.195 ± 0.0534	24	1.26 ± 0.104
11	0.199 ± 0.0483	25	1.2 ± 0.106
12	0.344 ± 0.0632	26	1.74 ± 0.118
13	0.112 ± 0.056	27	1.22 ± 0.116
14	0.539 ± 0.0617	28	1.47 ± 0.124
15	0.368 ± 0.0607	▼ 29	1.45 ± 0.126

Comparison with *y* alignment :

- same precision
- shifts in first stack <0.2mm
- global shift of the 3rd stack ~1mm

Conclusion

- Method :
 - The alignment can be performed using the guard ring positions in the *x* and *y* axis
 - In *y* the precision varies from 30μ m to 0.6mm with e- and 20μ m to 70μ m with π .
 - For *x* the precision varies from $30\mu m$ to $130\mu m$ with π .
- Misalignment :
 - The observed misalignment in the *y* axis is < 1.3 mm (electrons), <0.5mm (pions)
 - The misalignment in *x* is < 0.3mm in the first stack, <0.5mm in the second stack. The third stack has a global shift of ~1mm
 - Layers of the third stack are the most misaligned both in *y* and *x*
- Remarks :
 - The alignment does not have any impact on the resolution/linearity
 - A misalignment may bias (increase) the Molière radius, but the measured values in the *x* & *y* axis indicate a negligible effect (< 1 mm).
 - Taking into account the misalignment for the MC simulation should improve the agreement MC/data (interwafer gap description).
 - There is a systematic shift in *y* axis between the guard rings on two layers of the same slab, except the 9th slab. The shift is 0.13±0.01mm.