- Si/W ECAL undersampling studies
- Energy composition and transverse profiles of e⁻/e⁺ showers

Georgios Mavromanolakis *

* (also with **FERMILAB**)

Outlines

- Event selection
- Weighting schemes
- ► Results

- ► General
- ► Shower composition
- ► Transverse profiles
- ► Summary

Undersampling studies

- : study how the performance of the Si/W ECAL changes with respect to absorber thickness per layer
- : "emulate" different average effective W thickness per layer by undersampling the calorimeter and varying accordingly the weight of each layer

► · reminder

full Si/W prototype (24 X_0)

- \triangleright 30 layers \times 18 cm \times 18 cm, interleaved with 0.5 mm Si pads
- \triangleright readout by 1 \times 1 cm² cells, total: 9720 channels
- ▷ W absorber, 10+10+10 layers, 1.4 mm:2.8 mm:4.2 mm thick per respective layer

Event selection

▶ the usual selection criteria ...

- : select central part of wafer, ShowerX>-15mm .and. ShowerX<25mm
- : exclude gap in y, ShowerY>-5mm .or. ShowerY<-15mm
- : energy range cut to suppress double electron events (DESY runs)
- : suppress pion contamination, HcalEnergy<10mip (CERN runs only)
- runs under study (initial samples of 50k events)

				E(GeV)	e ⁺ run(CERN-06)
				10	300731
1	230098	E(Gev)	e run(CERN-06)	15	300733
2	230099	10	300672	16	300734
3	230097	20	300676	10	200725
4	230100	30	300207	10	300735
5	230104	45	300195	20	300736
6	220104		000100	30	300742
0	230101			50	300744
2 3 4 5 6	230099 230097 230100 230104 230101	10 20 30 45	300672 300676 300207 300195	16 18 20 30 50	300733 300734 300735 300736 300742 300744

Weighting schemes

Weighting schemes

weighting	total	average thickness
scheme	Nof layers	per layer (mm)
W1 W2 W3 W4	30 25 24 23	$egin{array}{c} 2.80 \pm 1.16 \ 3.36 \pm 0.70 \ 3.50 \pm 0.71 \ 3.65 \pm 0.70 \end{array}$

Response

Response

Response per incident energy

Energy resolution

Resolution vs absorber thickness per layer

adding some more points

(W2a)

(W2c)

15

20

layer index

weight

2.5

1.5

(W2b)

weighting total average thickness Nof layers scheme per layer (mm) W2a 29 2.90 ± 1.12 W2b 28 3.00 ± 1.06 W2c 27 $\textbf{3.11} \pm \textbf{0.98}$ W2d 26 $\textbf{3.23} \pm \textbf{0.86}$

Resolution vs absorber thickness per layer

"Performance" and "cost" trends

("performance" = 1/resolution)

(cost \propto N if it scales linearly with Si area)

Resolution vs absorber thickness per layer

simulation files from N.Watson and D.Ward

Energy composition and transverse profiles of e⁻/e⁺ showers

Outline

- General
- Shower composition
- Transverse profile per component
- ► Summary

080318 _____CALICE Collaboration Meeting, Argonne

General

- : the Si/W ECAL prototype has very high transverse and longitudinal segmentation
 - : it is an imaging calorimeter with which we can decompose a shower into its **spatial and energy subcomponents**

study with e⁻ and e⁺ runs

shower energy profile/composition shower transverse profiles per component overall transverse containment (Moliere radius)

as a function of incident energy

• event selection

: ... the usual selection criteria ...

fiducial cuts to select events hitting the central part of a wafer, energy range cut to suppress double electron events (DESY runs), suppress pion contamination (CERN runs)

Shower composition

▶ e.g. for a 10 GeV electron shower

the low-end : the lower energy hits that account for 22% of the total Nhits contribute 2.6% of the total deposited energy

the high-end : the higher energy hits that account for 3% of the total Nhits contribute 24% of the total deposited energy

 divide shower in 4 "components" and study their contributions, profiles, etc

Ehit < 2 mip 2 mip < Ehit < 10 mip 10 mip < Ehit < 50 mip 50 mip < Ehit

Shower composition wrt Nhits

Shower composition wrt Edeposited

Shower profiles along X (e⁻ example)

(energy weighted distribution of $X_{hit} - X_{barycenter}$)

alternate layers are staggered along X (by 2.5mm)

Shower profiles along Y (e⁻ example)

(energy weighted distribution of $Y_{hit} - Y_{barycenter}$)

alternate layers are NOT staggered along Y

Shower profiles (e⁺ example)

(energy weighted distribution of $X_{hit} - X_{barycenter}$, $Y_{hit} - Y_{barycenter}$)

Transverse width per component

Transverse containment (Moliere radius)

• theoretical definition

: for an infinitely long and wide calorimeter shower energy is contained at 90% within radius $\sim 1 R_M$ 95% $\sim 2 R_M$ 99% $\sim 3.5 R_M$: e.g. for solid tungsten, $R_M \simeq 10$ mm

• practical definition

: quote radii for 90% and 95% level of "signal" containment and $R_M \equiv R_{90\%}$

► · Si/W ECAL

- : case 1 "signal" = measured energy = $\sum E_i$, i=1,Nhits
- : case 2 "signal" = reconstructed energy = $\sum W \cdot E_i$ with W=1,2,3 for layer# 0 to 9, 10 to 19, 20 to 29

Transverse containment

(signal = measured energy)

Transverse containment

(signal = reconstructed energy)

Summary

▶ • study with e⁻ and e⁺ data at 10 to 50 GeV energy range

shower energy profile/composition shower transverse profiles per component overall transverse containment (Moliere radius)

as a function of incident energy

the Si/W ECAL prototype has very high granularity and we can probe an electromagnetic shower down to its core in great detail