Scintillator-ECAL beam tests

Satoru Uozumi, Kobe University for Daniel Jeans, Miho Nishiyama and all the ScECAL group

- 1. DESY Beam Test (Mar 2007) ... First test of ScECAL
- 2. KEK Beam Test (Nov 2007) ... To establish extruded scintillator strip
- 3. FNAL Beam Test (Sep 2008) ... Final test with larger prototype and various type & energy of beams

strip scintillator calorimeter

sampling calorimeter active material: scintillator absorber: W/Fe/Pb

designed for PFA: fine segmentation scintillator strips ~1x4 cm² orthogonal layers

each strip read out by MPPC photon counting device

built and tested small prototype first test for scintillator + MPPC check suitability for ILC ECAL

exposed to 1-6 GeV e+ beam at DESY 03/07

Detector setup, scintillator types

- 3 types of scintillator strips:
- Kuraray (Megastrip)

 WLSF readout
 direct readout (simpler)

 KNU/Korea (separate strips)

 extruded scintillator (inexpensive)
 WLSF readout

CALICE readout electronics (LAL-Orsay) borrowed from DESY CALICE A-HCAL group

produced 3 half-modules (13 layers each) with different scintillator types

tested 3 configurations Kuraray (fibre) + Kuraray (direct) Kuraray (direct) + Kuraray (fibre) Extruded (fibre) + Kuraray (fibre)

Compare performance of 3 configurations

MIP calibration

MIP response temperature dependence MPPC gain changes with temperature example: 18 strips in one layer

MIP response uniformity: detailed scan across single strip

extruded strips show significant non-uniformity

relative MIP signal

0.8

0.6

0.4

0.2

direct readout

position along strip [45mm/20]

20

10

12

light cross-talk between adjacent strips

Mega-strip structure: strips not perfectly isolated

runs with tungsten plates

range of e+ beam momentum: 1->6 GeV/c

scanned front face of detector

apply calibration constants temperature correction cross-talk correction

look at different detector regions quarter regions – most uniform central region – least uniform, least leakage –

reconstruct total energy deposited in calorimeter

linear response

no strong effect of MPPC saturation has been seen

Energy resolution of 3 configurations

resolution of configurations similar in quarter regions

at centre of detector, extruded+fibre much worse: strip uniformity improtant in this region

Conclusion of the DESY Beam Test Analysis of DESY testbeam data in good shape

In uniform regions, detector works well sufficient energy resolution for ILC ECAL ($\sigma/E \sim 14\%/\sqrt{E \oplus 2\%}$)

Non-uniformity and small light yield of extruded strips significantly degrades performance.

In progress...

Some further data analysis (MPPC saturation correction...) Detailed simulation Proceed to publication

Why the extruded scintillator showed such low light yield and non-uniformity?

- Some extruded scintillator strips have a bigger hole.
- Sometimes the hole isn't correctly centerd.
- Some extruded scintillator strips have leakage points.

KEK Beam Test (Nov-2007 at KEK Fuji electron beamline)

- Extruded scintillator R&D is very important for reduction of scintillator production cost.
- Need to perform deeper study of improved extruded scintillator strips by 2D scanning with MIPs.
- Evaluate light yield, position dependence, strip-by-strip variation, and compare various extruded strips with Kuraray strips.

KEK Fuji Beam-Line

- Electron beam-line from bremsstrahlung photons of KEKB
- Beam spot size: ~ 3 cm x 4 cm
- Beam energy : 1-4 GeV
- Rate: 15Hz @ 3 GeV

Scintillator Assembly

Scintillator Strips

- 8 layers with different types of strips
- 4 strips per one layer were read out.

type	Method	Read-	Cover	Thickness (mm)		
		Out				
A1	Extruded	Fiber	TiO ₂		No fiber	A, A2,, F beam
A2					good matching	
B1				3 big fiber hole matched hole b	big fiber hole	
B2			Reflector		matched hole	
С		Direct	TiO ₂			
D	Kuraray	Direct	Reflector	2		
Е				3		
F		Fiber			reference	

Extruded scintillator strip with a fiber hole (A,B)

Type : A covered with TiO2 A1 : fiber - MPPC bad matching A2 : fiber - MPPC good matching

Type : B covered with KIMOTO reflector film B1 : bigger hole B2 : matched hole

Response for MIP

All collected events MIP events

Signal (ADC counts)

Uniformity

Beam position (mm)

Conclusion of the KEK Beam Test

- Result shows acceptable performance of the extruded scintillator strips.
 - Type of reflector and position matching between fiber and MPPC are very important.
 - Extruded strip without fiber is not useful, since attenuation length is so short.
- More detailed analysis will follow.
 - Comparison of absolute light yield
 - Bias voltage dependence
- Feedbacks are provided to KNU colleagus.

Quality of the extruded scintillator will be improved for FNAL BT.

The FNAL beam test in Sep 2008

- Establish the Scintillator-strip ECAL technology
 - Test linearity of the ScECAL with high energy beam.
 - Evaluate all the necessary performances
 - using various beams (π ,K,e, μ) with wider energy range
- Combined test with the Analog HCAL
- Test $\pi^0 \rightarrow 2\gamma$ reconstruction (hopefully)
- Measure hadron shower to test simulation model

• The 2nd prototype will be 4 times larger than the DESY BT module.

 $(20 \text{ x } 20 \text{ cm}, \sim 30 \text{ layers})$

- Fully adopt the extruded scintillators.
- Expect > 2000 readout channels.

Schedule toward the FNAL BT

Concusion

- Scintillator-ECAL R&D is ongoing in good shape.
- The DESY beam test proves performance of ScECAL and gave lots of experiences to us.

Analysis of the data is in almost a final phase.

- The result of KEK beam test told us how to improve performance of extruded scintillator strips.
- At the FNAL beam test, various tests will be done to technically establish the ScECAL.

Backups

Trigger & Veto counter event selection

Energy resolution in different detector regions (fibre+direct, with absorber)

longitudinal shower profiles

quite smooth, a couple of smallish discontinuities reason still under investigation

Energy resolution

	quarter re	egions	central region		
	stoch. term(%) c	onst term(%)	<pre>stoch. term(%) const term(%)</pre>		
fibre+direct:	13.98 +- 0.07	1.96 +- 0.12	13.39 +- 0.05	2.57 +- 0.07	
direct+fibre:	13.83 +- 0.07 (2.58 + 0.09	13.70 +- 0.06	3.39 +- 0.05	
extruded+fibre:	14.61 +- 0.08	2.35 +- 0.12	14.52 +- 0.09	7.26 +- 0.05	
				\int	
	contri	non-uniformity			

Tracking detector alignment

determine drift velocity and relative positions of 4 drift chambers each chamber measures x,y position

Energy response uniformity, direct+fibre, 3 GeV

extruded+fibre @ 3 GeV: energy response vs. position

2-3 times more variation that direct+fibre configuration

extruded strips are less uniform

Simulation studies

simulation shows 4% lateral energy leakage, 1% longitudinal leakage (central beam injection)

simulate a larger detector (2x larger in each direction)

resolution of 1st configuration (real data) simulation of our detector 26 layers x 9x9cm² simulation of larger detector 52 layers x 18x18 cm²: no constant term!

shower leakage causes constant term of around 2.6%

measure xtalk across each strip boundary

correction of cross-talk

in each layer, define matrix with measured xtalk probabilities ($\sim 10\%$)

use this matrix to unfold the cross-talk

Comparison of Kuraray scintillator strips and KNU extruded

Kuraray

- Casted and machined
- High accuracy for the hole size and position
- Expensive

KNU Extruded

- <u>Extrusion</u>
 - Simultaneously the fiber hole is made and scintillator strip.
- Can be covered with TiO₂ at the same time.
- Cheap
- Low accuracy for the fiber hole size and the position

Extruder

The pictures were taken at Misung Chemical Company, Korea.

Response for MIP Variation of strip by strip

These plots show the variation of strip by strip is big.

Uniformity Variation of strip by strip

Beam position (mm)

These plots show the uniformity of these strips is not so big. However light yields are not same.