Analysis of Pion Data from the Vertical Slice Test of the RPC-DHCAL

José Repond Argonne National Laboratory

CALICE Meeting, Argonne, 17 – 19 March, 2008

Data with secondary beams

No noticable differences between runs within a setting

Analysis only of layers 0 – 5 (to be consistent) \rightarrow 6.8 X₀ or 0.7 λ_{I}

Positrons

Trigger = coincidence of 2 19 x 19 cm² scintillation counters and one Čerenkov

Unknown mixture **Pions/muons**

> Trigger = coincidence of 2 19 x 19 cm² scintillation counters vetoed by the .or. Of 2 Čerenkov counters

Momentum	Run number	RPCs	Number of events
16 GeV/c	701	0 – 6	6540
8 GeV/c	702	0 – 5	39376
4 GeV/c	703	0 – 5	13061
2 GeV/c	262	0 – 5	8544
1 GeV/c	270	0 – 8	10599

Momentum	Run number	RPCs	Number of events
16 GeV/c	801	0 – 5	29889
8 GeV/c	802	0 – 5	30657
4 GeV/c	261	0 – 5	5941
2 GeV/c	803	0 – 5	5642
	268 (bricks)	0 – 8	1068
1 GeV/c	269	0 – 8	1378

Brick Run at 2 GeV/c

Additional stack of Iron blocks

50 cm deep corresponding to 3 λ_I \rightarrow 97% of π interact $\rightarrow \Delta E_{\mu} \sim 600 \text{ MeV}$

Data Quality Number of hits e.g. Run 235 Difference of data time-stamps RPC2 with trigger time-stamp **RPCO** RPC1 Each bin 100 ns RPC3 RPC4 RPC5 -24 -22 -20 -18 -16 -14 Difference in Timestamps Looks good! Many fewer hits than e⁺ data RPC6 Layer #6 not operational

Hits distributed over large area

 \rightarrow requires fiducial cut

Not centered on calorimeter

Clusters in first layer

Data selection: All data

Some loss when no hits in first layer: biased efficiency?

~ 2000 events

Look mostly like upstream hadronic showers

Positron peak $\mu \pm \sigma = 49 \pm 10$

Fiducial cuts

Data selection: Request exactly one cluster in first layer

Number of hits - 802

Cluster in 1^{st} layer: R = maximum distance in x or y from center of layer

Significant leakage for R>5

(for e⁺ also R>5)

Hits in first layer

Data selection: Exactly one cluster in first layer Distance R< 5

Number of hits - 802

Request no more than 4 hits

Only 158 events

Upstream hadronic

showers

Hits in second layer

Data selection: Exactly one cluster in first layer Distance R< 5 Number of hits in first layer <5

Number of hits - 802

Choose this one

To separate MIPs (μ,π) from π 's which interacted early, but in the calorimeter

Hit distribution

Exactly one cluster in first layer Distance R< 5 Number of hits in first layer <5 Number of hits in second layer <5

Data selection:

Some contamination from 'late' showers

Hit distribution

Data selection:

Exactly one cluster in first layer Distance R< 5 Number of hits in first layer <5 Number of hits in second layer >4

Some MIP contamination at 16 GeV/c

Not much data at 1 and 2 GeV/c

Brick run – Hit distribution

Linearity – Resolution

Shower reconstruction – Pion selection

Calculate average x,y in each layer Fit straight lines through average x,y positions

Shower reconstruction – Pion selection

 $\Delta x \text{ or } \Delta y \text{ in [cm]}$

Residuals reasonably small and well centered

Pion runs – Shower reconstruction – Pion selection

Pion runs – Average shower shape – Pion selection

Effect of cut on nhit>4 clearly visible for p ≤ 8

Statistics too poor for $p \le 4$

Layer number

Monte Carlo Simulation

DHCAL Calibration procedure

Data (HV,THR) $\rightarrow \mu_0, \epsilon_0$ Correction for actual μ_j, ϵ_j of layer j $N_i^{DT} = \sum_{layer j} n_{i,j} (\epsilon_0/\epsilon_j) (\mu_0/\mu_j)$ i...event id \uparrow $N_i^{MC} (\mu_0, \epsilon_0)$

Reproduce hit distribution

- a) Get x,y,z of each energy deposit in the active gap from GEANT4
- b) [Filter hits if closer than R₀ (pick one of the hits randomly)]
- c) Generate measured charge distribution
- d) Distribute charge over pads assuming a black disk of radius R or Distribute charge according to STAR-RPC measurement
- e) Apply threshold T to flag pads above threshold (hits)
- f) Adjust T,R to reproduce measured n_hit distribution
- g) Compare T-dependence with measurement

Monte Carlo Input

- i_input = 1 ... flat distribution over single pad
- i_input = 2 ... track through layers 0 5, evenly distributed over pad 8/8
- i_input = 3 ... read data from file (output of GEANT4) ← **not yet available**

Charge spectrum – Fit to analog measurements

800 1000 χ^2/ndf 84.89 χ^2/ndf 103.4 23 32 700.3 Constant 1139. Constant 3287. 3245. Mean Mean 600 750 108.9 Sigma 123.2 Sigma 400 500 200 250 0 LL 2000 2000 9000 1000 6000 10000 14000 3000 4000 5000 6000 7000 8000 4000 8000 12000 ADC counts ADC counts 40 χ^2/ndf 77.32 62 1 χ^2/ndf 113.6 60 P1 0.5742E-03 P1 0.1060E-04 Ρ2 1,735 Ρ2 2,167 30 40 P3 0.1194E-02 Ρ3 0.8020E-03 20 20 10 2000 2000 3000 4000 5000 6000 8000 9000 1000 7000 14000 4000 6000 8000 10000 12000 ADC counts ADC counts

High Voltage = 6.2 kV

High Voltage = 6.4 kV

 $y = \alpha (x-2900)^{\beta} e^{-\gamma(x-2900)}$

Pion data at 6.3 kV

Charge spectrum – Implementation into Program

Charge distribution - Black disk with R = 0.2 cm

Black Disk Optimization

Can reproduce pad multiplicity and efficiency with

R = 0.45 cm and T = 0.55 pC

 \rightarrow R ~ 0.2 cm and T ~ 0.2 pC would have made more sense

Charge Distribution – Exponential dependence

Trying out different thresholds

Does not work too well Black disk actually a bit better

Conclusions

Pion analysis

Data mostly understood Separation of MIPs (μ , π) and 'early, but not too early' hadronic showers possible Some crude measurement of shower shapes

Monte Carlo simulation

Almost ready Not clear why simulation of avalanches different from expectation

Soon

Comparison with simulation Estimate of pion rate in beam

Concept of a RPC-DHCAL validated