

Anomalous Wtb @ILC – from tools to physics

Erik Devetak
Oxford - RAL
SiD 04/2008
Abingdon

Anomalous coupling (Motivation – Theory)

Tools needed (b tagging- charge)

Top-ID

Conclusion (The way forward)

Aim

- We plan to measure non standard model (anomalous) Wtb couplings of the top quark
 - In order to do this we identify a set of sensitive observables.
 - We develop reconstruction tools: b tagging, vertex charge.
 - Need good top reconstruction.

Why?

- The top quark mass approaches the energy scale of new physics. New physics often couples to mass! The top is thus useful to probe non standard model (anomalous) couplings.
 - The Wtb vertex defines the top total width and the characteristics of the decay products.

Top production – decay

Decay

ILC - main production channel

The top production at the ILC ≈ 0.8pb

Measurements of the CKM Matrix for the top quark give: $V_{th} = 0.999$ implies t→Wb > 99.8%

Channels:

Need good b-tagging!

Missing energy.

• tt → bb + *4 jets*

No missing energy, top frame easy to identify. **High statistics!**

(Forward-Backward Asymmetry)

 Can parameterise anomalous couplings as right and left handed form factors

	1	*		
	f_{2R}	f_{2L}	$A_{FB}, e^{+}e^{-} \text{ c.m.s.}$	A_{FB} , top frame
	unpolarized $e^+e^- \to t\mu\bar{\nu}_{\mu}\bar{b}$			
\bar{b}	0.0	0.0	0.279	0.030
\bar{b}	0.0	-0.2	0.243	0.010
\bar{b}	0.0	-0.4	0.218	-0.004
\bar{b}	0.0	-0.6	0.197	-0.020
\bar{b}	0.0	-1.0	0.169	-0.039
\bar{b}	-0.6	0.0	0.301	0.041
\bar{b}	-1.0	0.0	0.315	0.045
μ	0.0	0.0	0.079	-0.091
μ	0.0	-0.6	0.085	-0.084
	polarized $e_L^- e^+ \to t \mu \bar{\nu}_\mu \bar{b}$			
\overline{b}	0.0	0.0	0.354	0.100
\bar{b}	0.0	-0.2	0.265	0.034
\bar{b}	0.0	-0.4	0.200	-0.011
\bar{b}	0.0	-0.6	0.152	-0.047
\bar{b}	0.0	-1.0	0.087	-0.095
μ	0.0	0.0	0.145	-0.262
μ	0.0	-0.6	0.104	-0.233

- Asymmetries larger in cms frame. These superposition of production and decay asymmetries. The top frame asymmetries are 'pure'.
- b quark asymmetries are larger than the lepton ones.
- Polarization of the electron beam increases the asymmetries.

Need to discriminate b and b

Vertexing - Flavour Tagging

USE LCFI Vertexing and Flavour tagging

- Vertexing: ZVTOP ZVRES algorithm
- Flavour Tagging Inputs: Pt Corrected Mass,
 Joint Probablility, Number of vertices ...
- Neural Net : discriminate b,c, light quark jets
- Also use Calculation of Charge of Seed ("Secondary") Vertex...

Ŋė.

6 jets – Optimize the Ycut

E. Devetak, Y. Li

- Jet finder extremely sensitive to the applied y-cut.
- Need to optimise jet finder
- Take top events with all hadronic
 W-decays at MC and search for peak at 6.
- Can probably use also 7 and 8 jet events.
- 5 Jets more problematic?
- Y-cut used 0.001

ta Symnosium Ng

MC b quark -jet matching

- Can we use the true angular jet flavour to 6 jet events?
- Check angular distance between
 MC b-quark and closest jet
- Compare with second closest jet.
- Seems to work just fine.

Flavour Tagging

- First look if jets well separated at reconstruction level
- Then look at b tag given only b jets at MC level
- Performance not degraded in any noticeable way.
- Still need to check degradation of parton (vertex) charge...
- Caveat: Used SID fast MC –
 expecting worst performance with full MC but not dramatic decrease.

Vertex Charge

- Important to find the charge of the b-quark originating the jet
- Done by finding charge of the decaying b vertex
- If charge +/- then assume meson and infer parton charge
- Hadronisation into baryons rare
- So far we discard the neutrally reconstructed vertices and also events where no vertex present...

Jet Charge

IDEA: Use different variables to help us recoup extra efficiency?

E. Devetak -

-0.09257

0.2223

- Seems to work for B+ and B-
- Not as well as Vertex charge but extra info, and no need for secondary
- Discriminates also B0 and B0? (kinematics of decay...)

Jet Charge

B - tagging identifying tt

- All inclusive decays. Use only events where 6 jets reconstructed
- Clear peak at 2 reconstructed b quarks. Good discriminator for top
- Corruption from missing acceptance cuts and failure of b reconstruction reason of peak at 1
- Useful to take care of such events! (not yet done)

Top Mass - identifying the top

- All inclusive decays. Use only events where 6 jet reconstructed
- If plot all 6 jets combinatorics top peak barely visible
- Setting energy and momentum constrains peak is much sharper
- Still present wrong w b combinatorics.
- Corruption from events with one top decaying leptonicaly.
- •Use previous 2 slides to take care of these effects!

Not quite the asymmetries yet

- Analysis not concluded
 - Need to include background
 - Need to include acceptances
 - Study of asymmetries and of errors!

However

- Found suitable observables
- Developed tools for b tagging (used to ID the top)
- Developed tools for charge reconstruction (needed for A_{FB})
- Developed a method of identifying the top by using the b tag and mass

ALL PIECES IN PLACE - NEED TO BRING THEM TOGETHER

BACK UP SLIDES

The Wtb effective lagrangian

The effective CP conserving lagrangian of the Wtb can be written as:

Right handed (V+A). 0 in SM. Experimentally constrained ≤ 0.4x10⁻² (CLEO)

$$\mathcal{L} = \frac{g}{\sqrt{2}} \left[W_{\mu}^{-} \bar{b} (\gamma_{\mu} f_{1L} P_{-} + \gamma_{\mu} f_{1R} P_{+}) t - \frac{1}{2M_{W}} W_{\mu\nu} \bar{b} \sigma^{\mu\nu} (f_{2R} P_{-} - f_{2L} P_{+}) t \right] + \text{h.c.}$$
(1)
where $W_{\mu\nu} = D_{\mu} W_{\nu} - D_{\nu} W_{\mu}, D_{\mu} = \partial_{\mu} - ieA_{\mu}, P_{\perp} = 1/2(1 \pm \gamma_{5})$ and $\sigma^{\mu\nu} = i/2(\gamma_{\mu} \gamma_{\nu} - \gamma_{\nu} \gamma_{\mu}).$

Higher order anomalous couplings. These are 0 in SM. These are the couplings we propose to study.

Vertex Finding

D. Jackson, NIM A 388 (1997) 247

AIM: Find secondary and tertiary vertices

- LCFI implemented general ZVRES algorithm:
 - Represent tracks with Gaussian ´probability tubes´
 - Calculate vertex function
 - Search 3D-space for maxima of this function
 - Combine close-by vertices resolve ambiguities

Vertexing - Flavour Tagging

AIM: Distinguish between b-jets, c-jets and light-quark jets

- LCFI coded and implemented procedure developed by R. Hawkings as default (LC-PHSM-2000-021), however the code is extremely flexible
- Define highly discriminating tagging parameters
- Use parameters as inputs to Neural Network; this discriminates between b, c and light jets. Different inputs used depending on number of vertices
- Procedure's tagging inputs:

distance primary to furthest secondary vertex and its significance, track impact parameter significances, vertex momentum, number of tracks in secondary vertices ...

Tagging Inputs

- Number of vertices found good indication of underlying event
- M_{Pt} of secondary vertex most discriminating variable. (secondary needs to be found!)
- Probability that all tracks come from same secondary also good indicator
- Significance of tracks good discriminator when only interaction point is found

E. Devetak - Graduate Symposium 08

Purity-Efficiency

- Analysis at 500 GeV E_{CM} Done with di-jet events
- Using Mokka (Geant4)+ LDC Tracking + PandoraPFA
- b tagging is very good. Should suit the top analysis.
- We can reconstruct most of the b quarks with little contamination!

E. Devetak, M. Grimes, S. Hillert, B. Jeffery

Still working on optimisation of all parameters and cuts!

Top reconstructions – phase space

- Searching the phase space to get hints for various possible cuts
- In particular looking at angular cuts to lower the jet combinatorics in top reconstruction
- This has been done at parton level

E. Devetak - Graduate Symposium 08

- All inclusive decays. Use only events where 6 jet reconstructed
- Use kinematic fit to identify W.
- Constrain MassW₁ = MassW₂
- 4-Jet combinatorics use less b like jets plot best result
- Combine with b jets for top mass

