

DHCAL status, progress & future

Based on RPC efforts in CALICE mostly by US groups

> H.Weerts for DHCAL group

Argonne National Lab

Background

To use PFA algorithm for SiD need fine hadronic calorimeter with very fine longitudinal and transverse segmentation.

Up to now such a hadronic calorimeter has not been realized in a experiment.

Several solutions have been proposed; CALICE collab. pursues several

Solution investigated here is a gas based digital calorimeter

- Based on work with RPCs, use RPCs in avalanche mode.
- 1x1 cm sampling transverse
- Design digital/ one bit readout system
- Build vertical slice of whole system to test

Several years

Last year

Groups: Argonne, Boston, Fermilab & Iowa (built & run slice test)

H.Weerts

Two-glass design

One-glass ('exotic') design

History

- RPCs developed over last few years & tested
- Digital readout system designed
- DCAL chip designed & prototype built with Fermilab

•

.....stuck, little funding

•

- 2006 decide to build slice test
- DCAL chip new prototype
- 2007 construct & operate
- Two months in cosmic & debug mode
- Testbeam at Fermilab in summer
- Results now

Current Pad Board & Front End Board Design

H.Weerts

4-layer Pad-board (3 shown)

Blind vias to route sensitive signals to glue pads - needed to minimize contact with digital lines in FEB

8-layer FE-board (3 layers shown)

Also has blind vias

→ Very complex board design to minimize crosstalk & digital noise pickup

System Physical Implementation

Basic data block: 16-bite package (trigger timestamp OR hit data)

Test Beam Setup and Data Collection

Beam

The stack containing nine layers within the blue hanging file structure

The gas distribution rack

Same set up also used in cosmic ray test stand; just rotated(Blue frame)

Measurement of RPC efficiency, multiplicity

Determine operating point in: high voltage & signal threshold corresponding to the required efficiency & multiplicity.

Paper accepted by Journal of Instrumentation

Dependence on High Voltage

100 Efficiency [%] Pad multiplicity 6.2 kV 95 6.3 kV 6.4 KV 2 6.5 kV 90 85 6.2 kV 1.5 6.3 kV 6.4 kV 80 Ŧ 6.5 kV 75 25 50 75 100 125 150 175 200 225 25 50 75 100 125 150 175 200 225 Threshold in DAC counts Threshold in DAC counts

H.Weerts

Dependence on High Voltage

With higher HV lower pad multiplicity for a given efficiency

Dependence on Threshold

Operating point: eff ~ 90%

Operating point: $M \sim 1.4 - 1.7$

Exotic chamber

The chambers were operated with a high voltage of 6.3/6.0 kV

SID RAL meeting; 14-16 April 2008

H.Weerts

Dependence on Threshold

The chambers were operated with a high voltage of 6.3/6.0 kV

Number of Hits

H.Weerts

The chambers were operated with a high voltage of 6.3/6.0 kV. The threshold was set at 110 counts.

x-y Map of Inefficiency

The data were collected with a high voltage of 6.3 kV and a threshold of 110 counts.

RPC noise measurement

Included in same paper

SiD Measurement of the Noise Rate

The noise rate was measured using the self-trigger data acquisition mode of the DCAL chip.

The measurements were performed with a high voltage setting of 6.3 (6.0) kV, for the default (exotic - RPC6) chambers. The rate at our default threshold setting of 110 DAC counts corresponds to about 0.15 Hz/cm². Extrapolated to a calorimeter with ~50.10⁶ channels, this rate in turn corresponds to <u>0.2 hits/event</u>. With the high voltage to the chambers turned off the noise rate was found to be less than $4 \cdot 10^{-5}$ Hz/cm².

The measurements were performed with a threshold at 110 counts. The high voltage values for the exotic chamber (open circles) were set at 300 V less than indicated in the plot.

H.Weerts

Fishing line spacers

Fishing line spacers

x - y map of the noise hits for a typical default (RPC5) and the 'exotic' (RPC6) chamber. A clear clustering along the fishing lines located approximately at x = 4.2 and 10.7 is visible.

(Mb)

à

Barometric pressure at Calumet Harbor, IL

Sir

SID RAL meeting; 14-16 April 2008

1025

DHCAL as a calorimeter

measurement of positron shower and pion shower

Will be short on this; presented several times already

SiD Analysis of Positron Data

Two independent analyses

- a) Study of energy responseb) Study of longitudinal development
 - \rightarrow Results still very preliminary

Data sample

- Data at 1, 2, 4, 8, and 16 GeV

Monte Carlo simulation

- Needs calibration constants from µ-runs
- Needs careful implementation of pad multiplicities
- Current comparison based on assumptions and ignoring details

H.Weerts

Pion Analysis

SiD

Hit distribution: MIP-like events (muons and non-interacting pions)

Data selection:

Exactly one cluster in first layer Distance R< 5 Number of hits in first layer <5 Number of hits in second layer <5

H.Weerts

Nice MIP peaks

Some contamination from 'late' showers

SID RAL meeting: 14-16 April 2008

H.Weerts

System stability Electronic noise Readout errors

• RPC stack has been running since July, 2007

- Running 24/7 up to now (~9 mons), with very few interruptions
- Most tests with 8 RPCs (max: 9, min:6), ~ 2k channels
- Readout system is very stable
- RPCs are also very stable
 - Produced 12 RPCs (including 1 exotic) for Slice Test
 - 1 physically broken during a display
 - 1 paint layer damaged by humidity at MTBF (other chambers used different paint, immune of the problem)
 - 2 RPCs accidentally 'damaged' by impure gas
 - "damage" = regional higher noise rate, but otherwise OK to use
 - All other (8) RPCs are problem free (including the exotic!)
 - Noise levels (aging indicator) are very low and very stable!
- Electronic system has amazing noise performance
 - Electron noise floor at Thr = 10 15 DAC cnts (low gain, HV off)
 - Normally running at Thr ~ 110 DAC cnts

Data Error: current status

- Most errors have been successfully eliminated through system improvement
 - Improved grounding
 - Improved detector noise
 - New firmware
- Only one data error left under study
 - Originally thought it was not harmful
 - Recent tests shows that system drop data packages (trigger timestamp AND hit data) at ~0.5% level
 - Extensive tests started recently (identified the problem on a single piece of the readout system)
 - Expect to solve the problem in the near future then we will have a PERFECT (fully debugged) readout system

Long term running & availability of VST has been critical

With a fully debugged VST readout, we are confident in building 1m³

Full size RPC prototype chamber dead area

- 1st full size RPC constructed for 1m³
 - Used 1.2mm glass, 96cm x 32cm (VST: 1.1mm glass, 20cm x 20cm)
- Slightly modified assembly procedure works for large chamber
 - Chamber is gas tight (~ 5 meters long glue trace!)
 - Chamber is relatively stiff, deformation doesn't affect gas tightness
 - Good for large scale production
- Chamber dead area: 4.7%
 - Frame: 3.3% (irreducible, unless go for larger chamber)
 - Fishing line: 1.4% (can be reduced, if use other spacer)
 - Not including HV connector and gas tubing (supposedly sit in gap between modules in a real detector

Further R&D

Not a problem in triggered running

50% data lost when output buffer is empty

- Simple bug in ASIC logic: identified, corrected and simulated
- Noise introduced by internal test lines lacksquare
 - OK for RPC, fixed for ASICs on GEM board
 - Simple fix in chip packaging
- Problem with mask register and CI-mask register 0
 - Original design use asynchronous clear -- more sensitive to noise
 - Improved detector to reduce noise
 - Modify ASIC: needs some design time (~1 week)
- Problem with slow control readout 0
 - A bug in the ASIC prevents daisy chaining slow control readout addressed in FE board design
 - Trivial change already implemented

0

Last DCAL modifications before production

Current Pad Board & Front End Board Design

H.Weerts

4-layer Pad-board (3 shown)

Blind vias to route sensitive signals to glue pads - needed to minimize contact with digital lines in FEB

8-layer FE-board (3 layers shown)

Also has blind vias

→ Very complex board design to minimize crosstalk & digital noise pickup

• Current design has extremely good noise performance

- Noise floor: only 10 15 ADC count (low gain)
- System comfortably runs @ 30 ADC count or even lower (normal runs @110 ADC count)
- Left a lot of head room for cost reduction

• Have designed new 16 cm × 16 cm FEB with *NO* blind vias

- Still 8 layer
- Still has ground shielding layers to protect charge signals
- Primary change: now ALL vias come down to glue pad layer (bottom)

• Have designed *Two* new 16 cm × 16 cm Pad Boards also with *NO* blind vias

- One is 2 layer, with no internal ground plane
- One is 4 layer with 2 internal ground layers

New Pad Board & Front End Board Design

4-layer Pad-board (3 shown)

No blind vias

8-layer FE-board (3 layers shown)

No blind vias

New Pad Board & Front End Board

H.Weerts

Boards are manufactured, being stuffed and tested

• If the new design is successful, we can make <u>larger</u> boards:

 ⇒ Could not make larger boards before with blind vias – Too Difficult
⇒ Larger boards are cheaper, eliminates cables & connectors, reduces impedance mismatches, improves reliability, etc.

Assuming new design of Pad/Front-end boards is viable Includes labor and M&S

In US\$	10 layers			40 layers		
Item	Cost	Contingenc Y	Total	Cost	Contingenc Y	Total
RPCs	16,000	4,000	20,000	34,000	8,000	42,000
EDIA	70,000	0	70,000	70,000	0	70,000
DCAL	202,000	24,000	226,000	311,000	54,000	365,000
FEB	36,000	18,000	54,000	134,000	67,000	201,000
DCON	11,000	5,000	16,000	26,000	13,000	39,000
PadB	11,000	6,000	17,000	43,000	21,0000	64,000
DCOL	18,000	9,000	27,000	80,000	40,000	120,000
Misc	14,000	7,000	21,000	54,000	27,000	81,000
Total	378,000	73,000	451,000	752,000	230,000	982,000

With Pad/Front-end boards from the VST \rightarrow add ~\$290,000 + contingency (40 layers)

Reduction from: $424K \rightarrow 134K$ (factor of 3)

Substantial reduction from original estimate because of VST work

Plans

Under all circumstances

Will complete ongoing studies Will publish results from Vertical Slice Test

Instrumentation paper published in IEEE Muon calibration paper (almost) accepted by JINST Positron response paper - analysis complete, simulation needed, draft in preparation Pion response paper - analysis complete, simulation needed RPC rate measurement - not initiated yet

Assuming availability of funds

Will complete changes to DCAL chip and will produce chips Will start assembly of large chambers Will complete design of integrated Front-end boards and Data Concentrators Will produce entire readout system

 \rightarrow ready for test beams in early 2009

Have received funding for FY08(last week): \$290K to start

Goal: be part of CALICE HCAL @ FNAL in 2009

Summary

VST was very successful (system now virtually error – free)

- -> First evidence of viability of the Digital Hadron Calorimeter approach
- \rightarrow Validation of technical implementation (chambers and electronic readout)
- \rightarrow Results being analyzed and published
- \rightarrow System very stable over period of 9 months

1 m³ prototype section necessary to (extrapolation by x200)

- \rightarrow Provide detailed measurements of hadronic showers with RPCs
- \rightarrow Validate hadron shower models
- \rightarrow Gain further operational experience

Readiness for construction

- \rightarrow Larger RPCs (having been designed and constructed) now under test
- \rightarrow Small modifications to DCAL chip still necessary (no prototyping required)
- → Second (and cheaper) iteration of Pad- and FE-boards being tested
- \rightarrow Concept of merging of FE-board and Data concentrator being developed

Currently

 \rightarrow Received partial funding; decide on path to take

THE END

SID RAL meeting; 14-16 April 2008

SiD Linearity – Resolution

Reasonably stable

MIP-like events

shown at p = 0 (essentially all muons)

Showering events

N = $0.01+20.24 \cdot E^{0.44}$ (for positrons)

Sip Pion runs – Average shower shape – Pion selection (showering events)

 \rightarrow needs to be simulated

Effect of cut on nhit>4 clearly visible for $p \le 8$

Statistics too poor for $p \le 4$

H.Weerts

- All data/system errors were thoroughly studied
- An event reconstruction program was developed to build events correctly out of data with errors
 - Used to re-run all test beam data
 - Identify events with know data errors
- Known data errors: (~15 different errors)

Fatal Errors (bit definition): original data can not be recovered

bit 0: x beginning of run (BOR) events (or junk data at the beginning of a run)

bit 1: x end of run event (due to DAQ program, last event of a run may have lost data packages)

bit 2: x additional junk byte(s) (DCON error bits 1, 2, out of bound time stamp, non-matching time stamp)

bit 3: x fake trigger (only a few DCON shows up, with or without hit pattern)

bit 4: x "0" data + leading bit error

bit 5: x check sum error + reserved bit set

bit 6: x "0" time stamp (but other bytes are non-zero)

- bit 7: x wrong time stamp (in DCON or in individual chips, wrong T > correct T)
- bit 8: x trigger bit error (trigger bit bit[14][7] = 1, but hit patter != all 1's) (always have check sum error as well)

Non-fatal Errors (bit definition): original data can be recovered

bit 0: - wrong time stamp (in DCON or in individual chips, wrong T must be < correct T)

bit 1: x missing (a few) DCON in trigger timestamps

bit 2: x duplicate 16-byte data package

bit 3: x late trigger package (after some data package appeared, or even appears in the next event)

bit 4: x late data package (appeared in the next event)

Other: (mostly in charge injection runs) fake counter reset

• Going a step further: Make FEB & Data Concentrator Monolithic...

Vertical Slice Electronics Construction

H.Weerts

Large RPC production: frame extrusion

• VST chamber frames are all machined

- Very time consuming and labor intensive (costly)
- Critical dimension can be controlled to ~ 10% accuracy

• 1m³ chamber frames will be extruded

- Once setup, production is very cheap
- Very good uniformity over long distance
- Only need small amount of machining to cut into length/shape
- 1st prototype run: ~3 weeks ago
 - Critical dimension controlled to ~5% accuracy over several meters
 - One non-critical dimension was off by over 10%
 - Sample used to produce the 1st full size RPC for 1m³
- 2nd prototype run: last week
 - All dimensions agree with spec
 - Will go for production (miles of them)

FEB & Data Concentrator - Work in Progress

H.Weerts