## SiD ECal overview

From R.Frey's talk given by Y.Karyotakis

- Physics (brief)
- Proposed technical solutions: silicon/tungsten
  - "traditional" Si sensors
  - MAPS
- Progress and Status
- Opportunities for Research

## Physics and ECal

Guiding principles: Measure all final states and measure with precision

- Multi-jet final states
  - $\pi^{\circ}$  measurement should not limit jet resolution
  - id and measure h° and h<sup>±</sup> showers
  - track charged particles
- Tau id and analysis
- Photons
  - Energy resolution, e.g.  $h \rightarrow \gamma \gamma$
  - Vertexing of photons (  $\sigma_{b}$ ~1 cm ), e.g. for GMSB
- Electron id
- Bhabhas and Bhabha acollinearity
- Hermiticity

 $\Rightarrow$  Imaging Ecalorimetry can do all this



 $\tau^+ \rightarrow \rho^+ \nu$ 



### Segmentation requirement

- The above benefit from a highly segmented (in 3d) ECal
- In general, we wish to resolve photons in jets, tau decays, etc.
- The resolving power depends on Moliere radius and segmentation.
- We want segmentation significantly smaller than R<sub>m</sub> how *much* smaller is an open question



## Proposed technical solutions in SiD

A.) silicon/tungsten B.) silicon/tungsten

A) "traditional" silicon diodes with integrated readout
 Transverse segmentation 3.5 mm (Moliere radius ≈13 mm)

B) MAPS active CMOS pixels (Terapixel option)

Transverse segmentation 0.05 mm (Moliere radius ≈13 mm)

Goal: The same mechanical design should accommodate either option

## SiD Silicon-Tungsten ECal



### Baseline <u>configuration</u>: • longitudinal: (20 x 5/7 X<sub>0</sub>) + (10 x 10/7 X<sub>0</sub>) ⇒ 17%/sqrt(E)

• 1 mm readout gaps  $\Rightarrow$  13 mm effective Moliere radius

## Generic technical considerations

- Small readout gap
  - Maintains small Moliere radius, hence performance
  - Big impact on cost
  - ≈1 mm still looks feasible
- Power cycling
  - Turn off power between beam trains
  - $\Rightarrow$  Passive cooling (highly desirable!)
  - for (A), passive conduction of 20 mW to module end (≈75 cm) via the tungsten radiator results in a few °C temperature increase ⇒ OK !
  - for (B), this is an open question

| Config.  | Radiation<br>length | Molière<br>Radius |
|----------|---------------------|-------------------|
| 100% W   | 3.5mm               | 9mm               |
| 92.5% W  | 3.9mm               | 10mm              |
| +1mm gap | 5.5mm               | 14mm              |

## Si/W (A) R&D status overview

<u>Goal</u>: Produce full-depth (30 layers = 30 sensors) module for evaluation in a test beam using technology which would be viable in a real ILC detector.

- Require 1024-channel KPiX ASIC chips (Strom talk)
  - Evaluating 64-chan prototypes (KPiX-6 is latest)
    - Noise is OK for Ecal, but not understood to our satisfaction
  - Has been the critical-path item
- Silicon sensors
  - v1 evaluated successfully
  - v2 on order expect to have 40 ~ Mar 08
- Bonding of KPiX to Si sensors
  - First trials completed (gold bump-bonds)
- Tungsten in hand
- Readout cables short kapton cables OK
- Module mechanics and electromechanical serious work starting
- DAQ



## Si/W (A) R&D Collaboration

M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros Stanford Linear Accelerator Center

J. Brau, R. Frey, D. Strom, Barrett Hafner (ug), Andreas Reinsch (g) *U. Oregon* 

> V. Radeka Brookhaven National Lab

B. Holbrook, R. Lander, M. Tripathi UC Davis

S. Adloff, F. Cadoux, J. Jacquemier, Y. Karyotakis *LAPP Annecy* 

- KPiX readout chip
- downstream readout
- mechanical design and integration
- detector development
- readout electronics

- readout electronics
- cable development
- bump bonding
- mechanical design and integration

### v2 Si sensor – for test beam module



- 6 inch wafer
- 1024 13 mm<sup>2</sup> pixels
- improved trace layout near KPiX to reduce capacitance
- procurement in progress, 40 sensors, Hamamatsu

KPiX ASIC and sample trace

### KPiX-v6 gold-stud bonded to v1 sensors UC Davis group, Jan 08



Initial test results (1/25/08, UO) of first attempt (Palomar Tech.):

one open / 24 connections tested



### Towards a mechanical design...

#### Si-W Calorimeter Concept



Only 2 Si sensor mask-sets required

## B.) MAPS (Terapixel) Si/W

# The MAPS ECAL

Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson

University of Birmingham

J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy

Imperial College London

J.P. Crooks, <u>M. Stanitzki</u>, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani Rutherford Appleton Laboratory

## What are MAPS ?



- Monolithic Active Pixel Sensor
- Integration of Sensor and Readout Electronics
- Manufactured in Standard CMOS process
- Collects charge mainly by diffusion
- Development started in the mid-nineties, now a mature technology







# **The Chip - Specifications**

- 50x50 micron cell size
- Binary Readout (1 bit ADC)
- 4 Diodes for Charge Collection
- Time Stamping with 13 bits (8192 bunches)
- Hit buffering for entire bunch train
- Capability to mask individual pixels
- Threshold adjustment for each pixel
- ⇒ Usage of INMAPS (deep-p well) process





# The Chip : TPAC1 (ASIC1)

- 8.2 million transistors
- 28224 pixels; 50 microns; 4 variants
- Sensitive area 79.4mm<sup>2</sup>
- Four columns of logic + SRAM
  - Logic columns serve 42 pixels
  - Record hit locations & timestamps
  - Local SRAM
- Data readout
  - Slow (<5 MHz)
  - Current sense amplifiers
  - Column multiplex
  - 30 bit parallel data output



Marcel Stanitzki



## **Threshold scan**



Rutherford Appleton Laboratory



## Plans

### ( from Nov 07)

- Calibrations / Gain measurements
- Test beam at DESY (10 days)
  - All effort focusing on this right now
- Power measurements
  - Also try power pulsing
  - The chip is up for it
- Detailed charge collection studies
  - Deep p-well
  - Epi-thickness
- Design a second chip !

Science & Technology Facilities Council Rutherford Appleton Laboratory This happened ! No results yet.

uncertain?!

Marcel Stanitzki

## The path to the LOI

### • Technology choice

- MAPS terapixel still needs to be proven as a viable ECal technology
- Si diode/W ECal technology is well established for relatively small calorimeters. But the integrated electronics needs to come together.
- What does the physics say? Is there a physics case for segmentation << R<sub>m</sub>? Perhaps. The case needs to be made and weighed against the risks.
- Agreement: Make Si diodes the default, but continue the R&D and studies for terapixel. Attempt to make an ECal mechanical structure which can accommodate either without important compromise.
- We need to do a lot of work to solidify and amplify the physics case for the LOI -- simulation studies at all levels.
- Fallout from Dec 2007 funding problems in UK and US: Still evaluating the status. Bottom line: Continue R&D as best possible.

## There is a lot to do...

### • Si diode technical

- Current focus on KPiX development
- Starting serious look at mechanical issues
  - For SiD structure
  - For the test beam module
- What goes on the other end of the cable from KPiX?
- Procurement, layout, testing of a large number of sensors.
- Test beam(s) !
  - e.g. DAQ and data analysis
- Terapixel technical
  - Reconstruction within org.lcsim framework

### General needs:

- Sensor and electronics configuration for the inner endcap
- Simulation studies are badly needed
  - Especially to elucidate physics ⇔ segmentation

### Some needed studies

- Longitudinal structure (baseline is a motivated guess)
  - What EM resolution is *required* ?
    - Particle flow (photon E res. shouldn't contribute <u>on average</u>)
    - Other indications?  $h \rightarrow \gamma \gamma$ ?
  - Depth (containment) and numbers of layers (money, E resolution, pattern recognition of EM)
    - How much can the HCal help with EM resolution?
- Segmentation
  - gamma-gamma and  $h^{\pm}$  –gamma separability;  $\pi^{\circ}$  reconstruction
  - EM shower id
    - There has been progress. But we are still at an unsophisticated level relative to what has been accomplished, for example, at LEP.

#### • Physics/detector studies

- jet/pflow processes
  [pushes seg. issue]
  - Without beam constraint (eg invisible decays)
  - Jet combinatorics in complicated finals states
- Tau id and final-state reconstruction (polarization)
- Photon tracking
- Heavy quark id: electrons in jets, neutrino recon; exclusive B/D tags?

[pushes seq. issue]

## Summary

- The silicon/tungsten approach for the SiD ECal still looks good.
- We think it can meet the LC physics and technical challenges.
- Two technical approaches:
  - Baseline: Si diode sensors with integrated (KPiX) electronics
  - MAPS (terapixel) completely integrated
- There has been good, steady progress.
- There is a lot to do for the LOI.
- The recent political choices in the U.S. and U.K. have thrown a monkey wrench in the works.
- We are "taking stock" of the situation, but vow to press on to the extent possible.