Overview of the ILD vertex detector layout

Marc Winter (IPHC/Strasbourg)

OUTLINE

- Reminder on requirements :
\approx Physics goals $\quad \approx$ Running conditions
- Discussion on the limits imposed by beam background :
\approx Occupancy \longmapsto read-out speed $\quad \approx$ Radiation tolerance
- Vertex Detector geometries for the Lol :
≈ 5 layer geometry $\quad \approx 3$ layer-pairs geometry
- Questions addressed by Lol studies
\approx Detector geometry $\quad \approx$ Sensor performances
- Summary

- Aim for several goals :

\diamond excellent impact parameter resolution
\diamond distinguish impacts from close tracks (inside jets)
\diamond reconstruct soft tracks $\quad \diamond$ minimal m.s. \mapsto pattern confusions, $\Delta p / p$, part. flow, jet flavour content $\left(e^{-} v s \nu_{e}\right), \ldots$

- Constraints mainly driven by $\sigma_{i p}=\mathbf{a} \oplus \mathbf{b} / \mathbf{p} \cdot \boldsymbol{\operatorname { s i n }}^{3 / 2} \theta$
small a \mapsto high granularity (pixels) and small $R_{i n}$
small $b \mapsto$ small $R_{\text {in }}\left(b \sim R_{\text {in }}\right)$,
reduced mat. budget $\left(b \sim\left(X / X_{0}\right)^{1 / 2}\right) \mapsto$ low $P_{\text {diss }}$

Accelerator	$\mathbf{a}(\mu \mathrm{m})$	$\mathbf{b}(\mu m \cdot \mathrm{GeV})$
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	13	19
ILC	<5	<10

Accommodate running conditions (e.g. event pile-up, background from $\mathbf{e}_{B S}^{ \pm}$, photon gas, etc.)
\diamond occupancy \mapsto high r.o. speed (or extreme granularity) \mapsto power dissipation
\diamond irradiation \mapsto radiation tolerant detectors
\hookrightarrow Conflicts: high speed and low $P_{\text {diss }}$ call for low granularity and large inner radius

Accommodate requirements from other sub-detectors :
\diamond ex : relatively low B for PFA optimisation \Rightarrow increase of occupancy in VD

- Aim: ultra-light, very granular, poly-layer, swift, low power and rad. tol. Vertex Detector installed very close to the interaction point
\hookrightarrow Aim of the studies driven by the Lol : find an optimal balance between Granularity, Material budget, Radiation tolerance, Speed and Power dissipation (cost not expected to be a major issue)
\triangleright Complications:
\mapsto Several different detection technologies under development,
\mapsto Several read-out architectures under development
\mapsto Final performances achievable with each variant not yet assessed
\Rightarrow Trade-off is technology dependent \longmapsto convergence within a few years (EDR) is a challenge

■ 14 mrad crossing angle \longmapsto background simulation with Guinea-Pig from K.Buesser (22.01.2008)

Average hit density $/ \mathrm{cm}^{2} / \mathrm{BX}$ in each layer :
\approx inner most layer : ~ 5 hits $/ \mathrm{cm}^{2} / B X$ for $B=3.5 T(R=15 \mathrm{~mm})$
\approx second layer : 6 times less
\approx outer layers : 10-100 times less $B G$ than in inner most layer
\approx varying B by ± 0.5 T changes hit rate by $\sim 20-30 \%$
\longmapsto much less than uncertainty on hit rate itself

Uniformity in ϕ and z :

\approx moderate z dependence : maximal in inner layer (15-20 \%)
$\approx \phi$ dependence ???

Direct \& backscattered photons not yet (well) studied

Effect of 14 mrad crossing angle on hit uniformity ($B=3.5 T-R=15 \mathrm{~mm}$)

Distributions in ϕ and $z \Rightarrow$ no significant change between head-on \& 14 mrad Xing angle distributionsConcern for polar angle coverage : cloud of defocussed $e_{B S}^{ \pm}$may hit ladder ends

- Spatial distribution of defocussed $\mathbf{e}_{B S}^{ \pm}$studied with GuineaPig (vertical scales are arbitrary)

\Rightarrow Use the corner between direct and defocussed $e_{B S}^{ \pm}$to determine ladder lengths \longmapsto angular coverage

Corner position in z vs B and \mathbf{R} :

Continuous lines:

$$
\begin{aligned}
& z_{C} \simeq 8.3 \cdot R^{2} \cdot B \cdot \sigma_{z} \cdot 10^{10} / N \\
& \text { M.Battaglia, V.Telnov, } \\
& \text { Proc. 2nd Workshop on } \\
& \text { backgrounds at MDI, } \\
& \text { World Sci., } 1998
\end{aligned}
$$

Dots : GuineaPig simulation

$\triangleright \triangleright \triangleright$ GuineaPig simulation confirm empirical expression of z_{C}
$\triangleright \triangleright \triangleright$ For $R \geq 15 \mathrm{~mm}$: ladder half-length $\lesssim \mathbf{8 c m}$ free from defocussed cloud even for $B=3 \mathrm{~T}$

Required radiation tolerance because of beamstrahlung electrons :
$5 e_{B S}^{ \pm} / \mathrm{cm}^{2} / B X \mapsto 6 \cdot 10^{11} e_{B S}^{ \pm} / \mathrm{cm}^{2} / \mathrm{yr} \mapsto$ safety factor $(\geq 3): 2 \cdot 10^{12} e_{B S}^{ \pm} / \mathrm{cm}^{2} / \mathrm{yr}$

Ionising radiation :
$\approx 6.10^{11} e_{B S}^{ \pm} / \mathrm{cm}^{2} / \mathrm{yr} \mapsto \sim 20 \mathrm{kRad} / \mathrm{yr} \mapsto \sim 50 \mathrm{kRad} / \mathrm{yr}$ (inclined $e_{B S}^{ \pm}$trajectories)
\approx safety factor $(\sim 3) \longmapsto \sim 150 \mathrm{kRad} / \mathrm{yr}$
\Rightarrow in 3 yrs : 150-500 kRad

Non-lonising radiation :
$\approx e_{B S}^{ \pm}(10 \mathrm{MeV}):$ NIEL factor $\sim 1 / 30$
$\approx 6 \cdot 10^{11} e_{B S}^{ \pm} / \mathrm{cm}^{2} / \mathrm{yr} \simeq 2 \cdot 10^{10} n_{e q} / \mathrm{cm}^{2} / \mathrm{yr} \longrightarrow$ safety factor $(\sim 3) \simeq 6 \cdot 10^{10} n_{e q} / \mathrm{cm}^{2} / \mathrm{yr}$
\Rightarrow in $\mathbf{3}$ yrs : $\mathbf{2} \cdot 10^{11} \mathbf{n}_{e q} / \mathbf{c m}^{2}$ (much more than neutron gas ...)
\square Still to be studied: Photons

Maintain 2 alternative long-barrel approaches :

\square Two read-out modes considered :
\approx continuous read-out
\approx read-out delayed after bunch-train $\longmapsto 3$ double layers expected to help \Rightarrow mini-vectors
. 5 layers intercepting angles down to $\|\cos \theta\| \simeq 0.97$:

- Layer radii : $15,26,37,48,60 \mathrm{~mm}$
- Nb of ladders per layer: 10 (in) / 11/12 / 16 / 20 (out)

Ladder lengths : 125 mm (inner), 250 mm (outer)
Ladder support structure : carbon fiber (100 $\mu \mathrm{m}$ thick)

- Ladder sensitive part width on each layer :
- inner : 11 mm - second : 15 mm - outer : 22 mm
- $50 \mu \mathrm{~m}$ thick silicon
- Electronics at ladder end :
- 10 mm long
- $100 \mu \mathrm{~m}$ thick silicon
- Insensitive ladder edge :

- 1.5 mm wide
- $50 \mu \mathrm{~m}$ thick silicon
- can be activated

3 pairs of layers intercepting angles down to $\|\cos \theta\| \simeq 0.97$:

- Double-layer radii (inner/outer) : 16/18, 37/39, $58 / 60 \mathrm{~mm}$
- Nb of ladders per layer : 10 (in) / 12 / 20 (out)

Ladder lengths : 125 mm (inner), 250 mm (outer)
Ladder support structure : carbon fiber (100 $\mu \mathrm{m}$ thick)
Ladder sensitive part width on each layer :

- inner : 11 mm - outer : 22 mm
- $50 \mu \mathrm{~m}$ thick silicon
- Electronics at ladder end :
- 10 mm long
- $100 \mu \mathrm{~m}$ thick silicon

Insensitive ladder edge :

- 0.5 mm wide

- $50 \mu \mathrm{~m}$ thick silicon
- can be activated

Ladder geometry \longmapsto accommodate simultaneously different sensor technologies :

- Steering and r.o. electronics foreseen along the edges and at the ladder ends
- Ladder material budget: * VXD03: 0.11 \% X X_{0} * VXD04:0.16 \% X

Will be studied extensively by VD groups working on diff. sensor technologies
"Realistic" ladder fixture on "gasket"

\square "Gasket" : $0.74 \% \mathrm{X}_{0}$ in barrel

- Mechanical support (Be) :
- $R=75 \mathrm{~mm}$
- thickness $\simeq 500 \mu \mathrm{~m}: 0.14 \% X_{0}$
- Cryostat:
- $R=90 / 100 \mathrm{~mm}$
- styropor (10 mm) : $0.05 \% X_{0}$
- Al skin (0.5 mm) : $0.55 \% X_{0}$

Neighbouring trackers :

- Barrel :

- End-caps (provisionnal) :
- 3 disks of hybrid pixels
- 4 disks of Si strips
- Studies based on central massive production of signal and background events with baseline geometry
\longmapsto outcome will be used by VD groups for refined studies
- Vary basic parameters :
- innermost layer radius : $14 \mathrm{~mm} \lesssim R_{\text {in }} \lesssim 20 \mathrm{~mm}$
- ladder material budget : $0.1 \% X_{0} \lesssim t \lesssim 0.2 \% X_{0}$
- magnetic field strength : $3 T \leq B \leq 4 T$

Specific questions :

- optimal pixel pitch and read-out time for each layer
- mini-vector efficiency for BG rejection (layer-pair geometry)
- optimal number of ladders per layer, etc.
- influence of electronics on ladder edge and ends (mat. budget)
- influence of SIT : track matching \longmapsto time stamping , low P reconstruction, ...
- track matching (\& time stamping) with fw/bw trackers \longmapsto how long should the barrel be ?
- for which fw/bw material budget does a geometry based on short barrel + end-cap disks start to be more attractive than long barrel ?

Read-out architecture : continuous vs delayed r.o.

Continuous read-out :

- Several draw-backs : data throughput, power dissipation, EMI risk, etc.
- 5 hits $/ \mathrm{cm}^{2} / B X \Rightarrow 0.3$ \% hit occupancy in $50 \mu s$ (20 $\mu \mathrm{m}$ pitch)
$\Rightarrow \lesssim 1 \%$ pixel occupancy (3 seed pixels /hit due to inclined tracks)
- in case of 15 hits $/ \mathrm{cm}^{2} / B X \Rightarrow$ several \% pixel occupancy
\Rightarrow read-out may be too long \Rightarrow risk alleviated with fast read-out in 2nd layer

Delayed read-out :

- how small should the pixel be ?

Upper limit M on double hit /pixel \longleftrightarrow pixel pitch				
limit M	$(3 ; 3)$	$(3 ; 6)$	$(15 ; 3)$	$(15 ; 6)$
0.3%	$17.7 \mu m$	$12.5 \mu m$	$7.9 \mu m$	$5.6 \mu m$
0.1%	$13.5 \mu \mathrm{~m}$	$9.5 \mu \mathrm{~m}$	$6.0 \mu \mathrm{~m}$	$4.2 \mu \mathrm{~m}$
0.03%	$10.0 \mu \mathrm{~m}$	$7.0 \mu \mathrm{~m}$	$4.5 \mu \mathrm{~m}$	$3.1 \mu \mathrm{~m}$

$$
\Rightarrow \quad<10 \mu \mathrm{~m} \text { pitch mandatory }!
$$

Prob (≥ 2 hits/pixel) for $\mathbf{3 / 1 5}$ hits/cm ${ }^{2} / \mathrm{BX} \& 3 / 6$ pixels/hit

pitch	$(3 ; 3)$	$(3 ; 6)$	$(15 ; 3)$	$(15 ; 6)$
$20 \mu \mathrm{~m}$	0.48%	1.80%	9.25%	27.4%
$18 \mu \mathrm{~m}$	0.32%	1.21%	6.46%	19.9%
$16 \mu \mathrm{~m}$	0.20%	0.77%	4.26%	13.9%
$14 \mu \mathrm{~m}$	0.12%	0.46%	2.63%	8.94%
$12 \mu \mathrm{~m}$	0.07%	0.25%	1.48%	5.25%
$10 \mu \mathrm{~m}$	0.03%	0.12%	0.74%	2.72%
$8 \mu \mathrm{~m}$	-	0.05%	0.31%	1.18%
$6 \mu \mathrm{~m}$	-	0.02%	0.10%	0.39%
$4 \mu \mathrm{~m}$	-	-	0.03%	0.08%

- ILD baseline geometry :
\bumpeq vertex detector made of long cylinders (down to $\|\cos \theta\| \simeq 0.97$)
$\bumpeq B=3.5 T$ (intermediate between GLD and LDC fields)Two alternative geometries studied (inheritated from GLD \& LDC) :
\bumpeq VXD-03 : 5 layers ($R=15-60 \mathrm{~mm}$)
\bumpeq VXD-04 : 3 double layers $(R=16-60 \mathrm{~mm})$
\Rightarrow continuous and delayed read-outEmphasis on low material budget :
\bumpeq all layers $\simeq 0.48-0.54 \% X_{0}$
\bumpeq Be mecha. support, surrounded by cryostat (styropor) \& field cage (Al) $\longmapsto \Sigma=0.74$ \% X_{0}
$\triangleright \triangleright \quad$ Alternative geometry to study : short barrel with end-cap disks

