ILD Detector Optimisation

Angela Lucaci-Timoce

ILD Optimisation: Why and How? Subdetectors Questions Monte Carlo Generation Case Study: HCAL in LDC Conclusions and Overview

Overview

What is ILD?

GLD/LDC common features

- 'large detector concepts' \rightarrow large tracking volumes for particle separation
- TPC for pattern recognition in dense track environment
- high granularity ECAL/HCAL for particle flow

GLD/LDC differences

	LDC	GLD	ILD
Tracker	TPC	TPC	TPC
Coil radius	1.6 m	2.1 m	1.5-2.0 m ?
B-field	4 T	3 T	3-4 T
ECAL	SiW	Scintillator	SiW or Scintillator
HCAL	Steel - RPC or Scintillator	Scintillator	yes

Optimisation Studies: Why and How?

Main goal:

- find an optimal set of parameters for the ILD detector
- demonstrate that ILD can meet ILC physics requirements
- Initially, concentrate on global parameters like B-field and coil radius (major cost and PFA drivers)
- But do also sub-detector studies for optimising their physics performance

Optimisation strategy:

- $\bullet\,$ wish studies which are as realistic as possible $\rightarrow\,$ study signal + all SM background Monte Carlo
- ideally include machine and underlying events background
- use full detector simulation and reconstruction (tools available for both LDC and GLD)
- THEN optimise costs

Open questions:

- which parameters to optimise in view of the Lol?
- how much will we succeed on the given time scale (expect results by end of summer 2008)

- Priority: study the parameter space 'between' LDC and GLD
- But:
 - Scanning the full detector parameter space is very time consuming
 - More realistic approach: concentrate on the main parameters (coil radius and magnetic field)
 - GLD and LDC use different simulation and reconstruction tools, but have a common data format (lcio), so results can be compared directly
 - Idea: study physics performance dependence by changing parameters of GLD and LDC
 - \rightarrow provide cross-check of conclusions
- Advantages
 - good opportunity to exercise full reconstruction chain
 - enough to start to define ILD

LDC'/GLD' Common Parameters

Sub-detector	Parameter	GLD	LDC	GLD'	LDC'
TPC	R _{inner} [m]	0.45	0.30	0.45	0.30
	Router [m]	2.00	1.58	1.80	1.80
	Z _{max} [m]	2.50	2.16	2.35	2.35
ECAL barrel	R _{inner} [m]	2.10	1.60	1.82	1.82
	material	Sci/W	Si/W	Sci/W	Si/W
HCAL barrel	material	Sci/W	Sci/Fe	Sci/Fe	Sci/Fe
ECAL end cap	Z _{min} [m]	2.80	2.30	2.55	2.55
Solenoid	B-fi eld	3.0	4.0	3.50	3.50
VTX	inner layer [mm]	20	16	18	18

- A common point defi ned: GLD' and LDC' (larger LDC and smaller GLD)
 direct point of comparison
- Events generation will start with LDC'

Optimisation Strategy: Global Parameters

- Ultimately want to look at physics performance
- But also need to understand features by studying measurements like flavour tagging, PFA, etc

- PFA suggests: larger radius, higher magnetic fi eld
 But cost wants: smaller radius, lower magnetic fi eld
- Radius more important than B-fi eld

Optimisation Caveats

- Studies of low level performance measurements are useful. But how much survives at physics level?
- 2 E.g. $e^+e^- \rightarrow \nu\bar{\nu}W^+W^- \rightarrow \nu\bar{\nu}qqqq$, $\sqrt{s} = 800 \text{ GeV}$
- Compare visible energy from PFA with expected energy, i.e. after removing neutrinos/forward tracks+clusters (Wenbiao Yan)

Pandora Perfect gives better energy resolution that Pandora PFA, as expected. Does this difference survives at physics level (i.e. after jet fi nding/jet pairing)?

Optimisation Caveats - continued

- Force events into 4 jets (Durham)
- Plot masses of the two W's formed from the 3 possible jet-pairings

- Choose pairing with smallest mass difference
- Plot average mass of the two W'

In this case: Pandora PFA ~ Perfect PFA

• Jet finding 'dillutes PFA performance' \implies optimisation needs care!

Subdetectors Questions (I)

- B-field: why 4 T? Does B help jet energy resolution?
- ECAL inner radius/TPC outer radius
- TPC length/aspect ratio
- Tracking effi ciency forward region
- How much HCAL how many interaction lengths (4, 5, 6...)?
- Impact of dead material
- Longitudinal segmentation pattern recognition vs sampling

frequency for calorimetric performance

- Transverse ECAL/HCAL segmentation ; ECAL: does high/very high granularity help?
- Compactness/gaps sizes
- ICAL absorber: steel vs. W vs. Pb vs. U
- Oircular vs. octogonal TPC (are the gaps important?)
- ICAL outside coil
- TPC endplate thickness and distance to ECAL
- Material in VTX: how does this impact PFA?

Your contribution:

What about a similar list for Vertex?

Preliminary Answers to Some Subdetectors Questions

HCAL depth

ECAL transverse granularity

- Every analysis in the context of ILD optimisation will need a good (fully simulated) SM sample
- **②** In the end, 'beam' backgrounds (beam + $\gamma\gamma$) must be included in physics analysis
- Initially, develop analysis without 'beam' backgrounds (tools for including it should be developed in parallel)
- Start with SM signal and backgrounds generation
- Strategy:
 - set up a complete production chain (simulation + digitisation + reconstruction, including PF) on the **grid**
 - use databases for the production management
 - place the data on the grid storage elements (for the moment only at DESY, but there is work going on for saving the data also in Japan and North America)
 - provide web interfaces for data search

http://www-flc.desy.de/simulation/database/

This is a considerable effort

- Signals outside the SM have to be produced individually
- There is information how to:
 - set up Whizard exactly the same way as done for the SM sample
 - set the same beam structure and fragmentation for any other generator
- All signals (SM and outside SM) should be included in the same database
- Production plans:
 - start with SM calibration events (Z at 91.2 and 500 GeV, $t\bar{t}$ at 350 GeV) and single particle samples
 - advantage: time for testing the reconstruction chain while the 'real' physics events are simulated
 - start simulating several 10000 events for each sample (time for people to do more debugging)
 - then run the rest in the order of priorities (to be discussed)
 - do calibration
 - run digitisation and reconstruction (including Pandora PFA)

LDC Production (Philip Bechtle)

Possible signals or backgrounds	σ	No. events			
$e^+e^- ightarrow 4 f$	$50 { m fb^{-1}}$	5 M			
$e^+e^- ightarrow$ 6 f	$200 { m fb^{-1}}$	400 k			
$e^+e^- ightarrow 2 f$	$20 \ {\rm fb}^{-1}$	2.5 M			
$e^+e^- ightarrow hX$	$50 \ {\rm fb}^{-1}$	75 k			
Calibration samples					
Light quark 2 f at 91.2 GeV		20000 events			
$t\overline{t}$ (6 f) ar 350 GeV		20000 events			
Backgrounds					
$\gamma\gamma o X$	$0.1 { m fb^{-1}}$	1 M			
$e^+e^- ightarrow \gamma\gamma~(n imes\gamma)$	$10 { m fb^{-1}}$	0.5 M			
$ u u (\mathbf{n} imes \gamma)$	$20 \ {\rm fb}^{-1}$	1.5 M			
$e^+e^- ightarrow e^+e^-$	$0.1 { m fb^{-1}}$	0.2 M			
${f e}^+\gamma o {f e}^+\gamma$	$0.1 { m fb^{-1}}$	0.6 M			
rest	$1 {\rm fb}^{-1}$	0.6 M			

- Optimisation studies not restricted to this list
- Should be driven by optimisation needs and physics interests of the involved people

GLD Production (Akiya Miyamato)

- Not suffi cient resources in Japan to do all SM processes
- Concentrate on signal samples
- Use knowledge from LDC results with critical background processes

Possible signals at $\sqrt{s} = 500$ GeV
$e^+e^- ightarrow au$ pair
$e^+e^- ightarrow$ top pair
chargino, neutralino, smuon pair production
Possible signals at $\sqrt{s} = 250$ GeV
$e^+e^- \rightarrow ZH \rightarrow e^+e^-H, \ \mu^+\mu^-H, \ M_H = 120 \text{ GeV}, \ \sqrt{250} \text{ GeV}, \ \sigma = 250 \text{ fb}^{-1}$
$e^+e^- ightarrow ZZ ightarrow eeZ, \ \mu\mu Z$
$e^+e^- ightarrow ZH ightarrow u u Z, qqH$
Calibration samples
Single particle: γ , K_{l}^{0} , μ
<i>uds</i> events (no ISR): $\sqrt{s} = 91.18$, 200, 300, 500 GeV, 10 k events
c, b events (no ISR): $\sqrt{s} = 91.18$, 200, 300, 500 GeV, 10 k events

Case Study: HCAL in LDC (Mokka)

- LDC detectors progressed a lot
- Case study: HCAL
- One of the first changes: HCAL ring (Paulo Mora) to cover the gap between HCAL barrel and endcaps

HCAL Preparation for Optimisation

- Sustained work in the last months on the HCAL description in Mokka:
 - closer to 'reality'
 - more flexible (i.e. introduce steering parameters to allow optimisation studies)
- New: layer support structure in the barrel and additional gap in the middle of the module
 - dimensions about half of the engineering values
 - need to study the impact on PFA

Possible HCAL Optimisation Studies: Sampling

Study sampling effects by changing:

Absorber material

• current sampling structure: 20 mm Fe : 5 mm scintillator (4:1)

check other materials: Fe vs Pb vs W

Absorber/scintillator thickness

Possible HCAL Optimisation Studies: Tiles Sizes

- Ourrent status: 3 × 3 cm² scintillator tiles in the middle of a layer, plus fractional tiles at the edges x_{fractional tile} ∈ [1.5 cm, 3 cm)
- **2** \implies Staggering of hits in x y (but alignment in z)

⇒ No reconstruction algorithm should assume alignment!

) Replace $3 imes 3 \ {
m cm}^2$ cells by $6 imes 6 \ {
m cm}^2$ in the last 12/24 layers

Angela Lucaci-Timoce

Possible HCAL Optimisation Studies: Non-pointing Cracks (I)

- I Current status: ϕ and z pointing cracks in the barrrel
- 3 Neutral particles not bent by magnetic fi eld \rightarrow escape detection

 \rightarrow Doubt that we will ever build an HCAL with pointing geometry...

HCAL Optimisation: Non-pointing Cracks (II)

Imaginary non-pointing geometries (on a back of a paper, don't take them too serious):

 \rightarrow Waiting for input from the engineers

Conclusions and Overview

- Detector models:
 - last week tagged Mokka version for LDC models
 - plan to start production with LDC' model (common points with GLD)
 - GLD/GLD' implemented in Jupiter
- Monte Carlo production:
 - production chain on grid ready
 - web interface for production info available
 - generator files will be mostly copied to DESY storage elements
 - we have a proposed list of priorities for the type of events to be first generated (to be rediscussed within their groups)
- Optimisation studies:
 - expect results by the end of summer 2008
 - but they will continue through 1010/1012
 - major efforts have been done, but still a lot ahead of us

Acknowledgments

Thank you for ideas and/or material: Mark Thomson, ...