

Preliminary Design Studies on LDC Vacuum Pipes

Y. Suetsugu, KEK

- Loss factor
- Structural strength
- Expected pressure profile

2008/03/3-6 TILC08-Sendai 1

Base Model

Model for calculation

Results

 k_{in} and k_{out} is different, since the apertures at both ends are different.

$$k_{\text{total}}$$
 (two beams) ~7x10¹³ V/C @ $\sigma_z = 0.3 \text{ mm}$

If
$$q = 3.2 \text{ nC}$$
, $N_b = 5400 \text{ bunch}$, and $f_r - 5\text{Hz}$: $I - 8.6 \text{x} 10^{-5} \text{ A}$

$$P = kqI = \sim 20 \text{ W (one side)}$$

For reference; at ERING08, for two beams, Suetsugu: $k = 8 \times 10^{14} \text{ V/C}$ Too big. Yamamoto-san:

$$k = 1.6 \times 10^{14} \text{ V/C}$$

Novokhatski-san:
 $k = 5.5 \times 10^{13} \text{ V/C}$

Effect of round edges at cone section

- Effect of round edges
 - $-\sigma_z = 3 \text{ mm}$
 - Two beams

Туре	Loss factor (k _{total})	Ratio
LDC-1	6.81731x10 ¹²	100%
LDC-2	6.71416x10 ¹²	98.5%
LDC-3	6.68828x10 ¹²	98.1%

Almost no effect on the loss factors.

- Dissipation of power
 - Examples of lower modes in the structure

Most of power will be dissipated at the cone section.

2008/03/3-6 TILC08-Sendai 7

Deformation and stress

- Material: Al alloy (Al5052, H34), with a thickness of 3 mm.
- Load: Atmospheric pressure (1.013x10⁵ Pa)

Result: Deformation

Deformation is much decreased by the round edges.

Result: Deformation

Deformation further reduces to a half.

Result: Stress (Von Mises stress)

Stress is also much reduced by the round edges.

Result: Stress (Von Mises stress)

Stress further reduces to a half.

(Yield strength of aluminum alloy is 2.2x10⁸ Pa)

Base Model

- Gas desorption
 - Pre-baking before assembling should be done.
 - The chambers should be treated carefully after the pre-baking to avoid any contamination.
 - Water should be kept away as much as possible.
 - Thermal gas desorption rate without baking:
 - After 10 hours evacuation:

```
CO: 2 \times 10^{-7} \text{ Pa m}^3 / \text{s/m}^2 (\sim 2 \times 10^{-10} \text{ Torr } I / \text{s/cm}^2)
H<sub>2</sub>: 2 \times 10^{-6} \text{ Pa m}^3 / \text{s/m}^2 (\sim 2 \times 10^{-9} \text{ Torr } I / \text{s/cm}^2)
```

After 100 hours evaculation (after 4 days)

```
CO: 2 x10<sup>-8</sup> Pa m<sup>3</sup> /s/m<sup>2</sup> (~ 2 x10<sup>-11</sup> Torr //s/cm<sup>2</sup>)
H<sub>2</sub>: 2 x10<sup>-7</sup> Pa m<sup>3</sup> /s/m<sup>2</sup> (~ 2 x10<sup>-10</sup> Torr //s/cm<sup>2</sup>)
```

About 20 times larger than those after baking (O. Malyshev)

- Pumps
 - NEG strip: ST707 (SAES Getters), for ex.
 - Aligned at the circumference of pipe

Results

P ~ $1x10^{-6}$ Pa for H₂.

The assumed pumping speed is the minimum.

Summary

Some vacuum properties of LDC beam pipe was studied.

- (1) Loss factor of one side for two beams is about 7x10¹³ V/C, and the dissipated power will be about 20 W.
 - Round edges of cone sections has little effect.
- (2) Structural strength is much improved by introducing round edges at cone section.
 - The stress is much lower than the yield strength of a typical aluminum alloy.
- (3) Vacuum pressure almost less than 1x10⁻⁶ Pa will be obtained without baking.
 - Effective pumping speed of about 0.7 m³/s is required at least for H₂.

Data

• Reference

- Assumptions
 - Distributed pumping to effectively evacuate these conductance-limited beam pipes
 - Use NEG strip: ST707 (SAES Getters), for ex.

ST 707/CTAM/30D Strip
Typical Sorption Curves

St707 NEG strip

Activation: 450 C x 45 min Sorption: T= 25 C P= 3E-6 Torr Ref. M.FSPT.0004 Rev.0 Jan 5, 1994

