Beam-beam interactions with full polarization Tony Hartin - John Adams Insitute

- MOTIVATION: physics requires precision treatment of polarization so implement full polarization of beam-beam processes
- review CAIN polarization treatment for beamstrahlung and incoherent processes
- Discuss implementation of Breit-Wheeler x-sect in CAIN and partial polarizations
- Implement BW x-sect with full polarizations and generate some results
- Discuss EPA dependency on virtual photon polarization
- develop expressions for virtual photon polarization

Incoherent pair processes

- Breit-Wheeler - 2 real $\boldsymbol{\gamma}^{\prime}$ s
- no equivalent photon approximation needed
- usual helicity amplitudes
- In CAIN, by default, only circular polarisation of initial photons included radiation and azimuthal angles neglected

Tony Hartin

- Bethe-Heitler and Landau-Lifshitz - virtual γ 's
- equivalent photon approximation should be adjusted to allow for virtual photon polarization
- Need to take into account final state azimuthal angle

Beamstrahlung photon polarization

Energy spectra given by Sokolov-Ternov equation

$$
d W=-i \frac{\alpha m}{\sqrt{3} \pi y}\left[\int_{z}^{\infty} K_{5 / 3}(z) d z+\frac{x^{2}}{1-x} K_{2 / 3}(z)\right] d x \text { where } z=\frac{2 B_{x i d}}{3 B y} \frac{x}{1-x}
$$

polarization first calculated with individual basis vectors then rotated to the same basis to be used as input to pair processes
e_{z}

A version of the Sokolov-Ternov equation with the polarizations written explicitly gives beamstrahlung polarizations

ICBW initial state photon
Stokes vector components (per bunch crossing)

CAIN Breit Wheeler monte-carlo

$$
\sigma_{B W}=\frac{m^{2} r_{e}^{2}}{2 \omega^{2}} G \text { where } G=\int F(\cos \theta, \phi) d \cos \theta d \phi \quad, \quad F=\frac{d \sigma_{B W}}{d \cos \theta d \phi}
$$

1) Generate two random numbers $r_{1} \epsilon(0,1)$ and $r_{2} \epsilon(-1,1)$
2) Reject event if $r_{1}>P$
3) If event selected then solve $F(|\cos \vartheta|)=|\mathrm{r} 2| \mathrm{G}$ for $\cos \vartheta \quad$ (sign of $\cos \vartheta$ determined from sign of r_{2}. Neglect φ variation)
4) Calculate event probability P in a given time interval Δt and volume. If $\mathrm{P}>0.1$ decrease $\Delta \mathrm{t}$ and repeat
5) Reconstruct $p_{t}=|p| \sin \vartheta\left(n_{1} \cos \varphi+n_{2} \sin \varphi\right)$
6) If high beamstrahlung energy then ϑ is small, but if not shouldn't

BW cross-section with polarizations

- Breit-Wheeler cross-section, CAIN original:
$\sigma_{\text {orig }} \propto 2\left(1-h+\frac{2 \epsilon^{2}-1}{2 \epsilon^{4}}\right) \sinh ^{-1} p+\frac{p}{\epsilon}\left(3 h-1-\frac{1}{\epsilon^{2}}\right)$
where
$\mathrm{p}=$ electron momentum
$\epsilon=$ electron energy
$\mathrm{h}=\xi_{2} \xi_{2}$
full treatment due
to Baier \& Grozin hep-ph/0209361 $d \cos \theta d \phi$

$$
\begin{array}{r}
\sigma_{\text {new }} \propto 2\left(1-h+\frac{2}{\epsilon^{2}}\left(h a+\xi_{1} \xi_{1}^{\prime}\right)-\frac{h a}{\epsilon^{4}}\right) \sinh ^{-1} p+\frac{p}{\epsilon}\left(3 h-1-\xi_{1} \xi_{1}^{\prime}-\xi_{3} \xi_{3}^{\prime}-\frac{h a}{\epsilon^{2}}\right) \\
\text { where ha }=1+\xi_{3}+\xi_{3}^{\prime}+\xi_{3} \xi_{3}
\end{array}
$$

Full expression has similar structure to original CAIN form, so
Daresbury 27.3.2008

Final pair polarizations $\zeta^{(f)}$

$$
\zeta_{i}^{(f)}=\frac{1}{F} \sum_{i i^{\prime} j^{\prime}} F_{i j^{\prime}}^{i 0} \xi_{j} \xi_{j^{\prime}}^{\prime} \text { where } F=\sum_{i j^{\prime}} F_{i j j^{\prime}}^{00} \xi_{j} \xi_{j^{\prime}}^{\prime}
$$

- Beamstrahlung photons have almost no circular polarization component - due to beam field having constant crossed field vectors
- $1^{\text {st }}$ two components of the BreitWheeler pair polarization depends heavily on the photon circular polarization component, therefore ~0
- Pair polarization contained in the $3^{\text {ra }}$ component

- Final $\mathbf{e}-\zeta_{1}=-0.0024$ $\zeta_{2}=-0.0024 \quad \zeta_{3}=0.9883$
- Final $\mathbf{e}+\zeta_{1}=0.0023$

$$
\zeta_{2}=0.0079 \quad \zeta_{3}=-0.987
$$

Daresbury 27.3.2008

Pair data - Energy and P_{t}

Pair transverse momentum per bunch crossing

- Low energy and low Pt pairs are suppressed
- No changes at higher energies of higher P_{t}
- Dependency on azimuthal angle of final states not yet included in CAIN
- CAIN cross-section only terms containing products of one or two polarizations (there should be products of 3 and 4 as well)

EPA and virtual polarization

$$
\mathrm{d} \sigma=\frac{\alpha}{4 \pi^{2}\left|q^{2}\right|}\left[\frac{(q P)^{2}-q^{2} 2 p^{2}}{(p P)^{2}-p^{2} P^{2}}\right]^{1 / 2}\left(2 \rho^{++} \sigma_{\mathrm{T}}+\rho^{\circ 0} \sigma_{\mathrm{S}} \frac{\mathrm{~d}^{3} p^{\prime}}{E^{\prime \prime}}\right.
$$

- σ_{T} and σ_{S} are the BW x-sects for transverse pol photons and scalar photons respectively
- ρ is the density matrix of the virtual photons which in general is non-diagonal and therefore the virtual photons are polarized
- If we dont detect final pair momenta then..... \Rightarrow
- Otherwise... need polarised BW x-sect and the polarization state of virtual photons

$$
\mathrm{d} \sigma_{\text {ep }}=\left[\frac{\mathrm{d} \sigma_{\gamma}}{\mathrm{d}^{3} k_{1}}+\frac{1}{2} \xi \cos 2 \varphi \stackrel{\mathrm{~d}\left(\sigma_{1}-\sigma_{\perp}\right)}{\mathrm{d}^{3} k_{1}}\right] \mathrm{d}^{3} k_{1} \mathrm{~d} n\left(\omega, q^{2}\right) \frac{\mathrm{d} \varphi}{2 \pi}
$$

$\mathrm{d} \sigma=\sigma_{\gamma}(\omega) \mathrm{d} n(\omega) ;$

$$
\mathrm{d} n(\omega)=\int_{q_{\min }^{2}}^{q_{\max }^{2}} \mathrm{~d} n\left(\omega, q^{2}\right)=N(\omega) \mathrm{d} \omega / \omega ;
$$

Budnev et al Phys Rep 15(4) 181-282 (1975)

- k_{1} is the 3 -momenta of one of the secondaries
- φ is the azimuthal angle of k_{1} relative to the (p, p^{\prime}) plane Tony Hartin ξ is the virtual photon polarization

Virtual photon polarization I

Spectral component of bunch electric field as a function of transverse position

$$
E_{w}^{x, y}=-\frac{i e}{\pi v} \iint \frac{q_{x, y}}{q_{x}^{2}+q_{y}^{2}} F(q) e^{i x q_{t}} e^{i y q_{y}} d q_{x} d q_{y}
$$

where the form factor is $F(q)=N \exp \left[-\frac{1}{2}\left(q_{x} \sigma_{x}\right)^{2}-\frac{1}{2}\left(q_{y} \sigma_{y}\right)^{2}\right]$
and the
polarization
vector of virtual photons

$$
e_{x, y}=\frac{E_{\omega}^{x, y}}{\left|E_{w}^{x, y}\right|}
$$

see Engel, Schiller \& Serbo Z Phys C 71, 665 (1996) integration is performed by expanding in a taylor series and using the limit $\sigma_{\mathrm{x}} \gg \sigma_{\mathrm{y}}$ for flat beams

$$
E_{w}^{x}=-i \frac{x}{\sigma_{x}^{3}} \exp \left(-x^{2} / 2 \sigma_{x}^{2}\right]\left[\sigma_{y} \exp \left(-y^{2} \mid 2 \sigma_{y}^{2}\right)+\sqrt{\frac{\pi}{2}} y \operatorname{Erf}\left(y \mid, \overline{2} \sigma_{y}\right)\right]
$$

Tony Hatrin
and similar for

Daresbury 27.3.2008

Virtual photon polarization II

X and Y spectral components of bunch electric field

Virtual photon polarization

Magnitude of y component of spectral electric field is much greater than x component. Has consequences for stokes parameters since

$$
\begin{aligned}
& \xi_{1}=E_{\omega}^{x} E_{\omega}^{y *}+E_{\omega}^{y} E_{\omega}^{x *} ; \quad \xi_{3}=E_{\omega}^{x} E_{\omega}^{x *}-E_{\omega}^{y}{ }_{\omega}^{y}{ }^{y} \\
& \xi_{2}=\tilde{J}\left[\hat{E}_{w}^{y} \hat{E}_{w}^{x *}-\hat{E}_{w}^{x} \hat{w_{w}^{y}}\right]=0
\end{aligned}
$$

> No circular polarization BUT processes occur in bunches undergoing pinch effect and other disruption, could use a more realistic form factor for the bunch field

Summary and things to do

- Investigated present treatment of polarization in CAIN and developed expressions for BW x-sect with full polarizations
- CAIN modified, using present monte-carlo scheme to include Breit-Wheeler x-sect with full polarization
- Compared to CAIN default (BW with circular polarization only) there is a suppression of low energy pairs when we account for full polarizations
- Circular polarization of initial states very low (beam field is a constant crossed field) consequently final states almost completely depolarised
- Expressions for virtual polarization developed
- CAIN needs proper treatment of azimuthal angle in order to implement virtual photon polarization

