Bunch field effect on Beam-beam processes

Tony Hartin - John Adams Institute

- MOTIVATION: Bunch field strength (ILC default parameters) is chosen to be not too large to the extent that $1^{\text {st }}$ order external field processes (coherent pair production) is limited..... BUT, $2^{\text {nd }}$ (and higher) order external field processes don't (necessarily) have the same dependence on the external field strength - they need to be investigated
- Discuss EPA as regards the 4 -fermion process modified by bunch
- Derive Sokolov-Ternov equation using Dirac equation solutions in external field to determine approximations
- Describe analytic calculation of $2^{\text {nd }}$ order coherent processes

Solution of Dirac equation in beam field A^{e}

$$
\left[\left(p-e A^{e}\right)^{2}-m^{2}-\frac{i e}{2 \mathbb{F}_{\mu \nu}^{e}} \sigma^{\mu \nu}\right] \psi_{V}(x, p)=0
$$

- Look for a solution of the form: $\psi_{v}(x, p)=u_{s}(p) F(\phi)$
- Substitution of the general solution for ψ_{V} yields a first order d.e. whose solution can be expanded in powers of k, A^{e}

$$
\psi_{V}(x, p)=\left[1+\frac{e}{2(k p)} k A^{e}\right] \exp \left[F\left(k, A^{e}\right)\right] e^{-i p x} u_{s}(p)
$$

- Now look for simplifications by physical

The Volkov solution in more detail

$\psi_{v}(x, p)=\left[1+\frac{e}{2(k p)} K A^{e}\right] \exp \left[F\left(x, p, k, A^{e}\right)\right] e^{-i p x} u_{s}(p)$

make Fourier transform to get linear term in \times
$\int d r \exp \left[-i\left(r+\nu^{2} / k p\right) k x\right] F_{2}\left(p, k, A^{e}\right)$
r term interpreted as a contribution from r external field photons (r can be -ve!)
v^{2} term is a shift in electron momentum
non-external field Dirac solution for ILC parameters

$$
\frac{\omega}{m} \approx 0.06, v^{2}=\frac{e\left|A^{q}\right|}{m} \approx 1
$$

so for large E_{p} second term can be neglected
Volkov soln represented in Feynman diagrams by double straight lines

Daresbury 28.3.2008

4-fermion IFQED process

- To do bunch field effect properly replace all fermion lines by Volkov solutions
- $4^{\text {th }}$ order external field process is intimidating so look for an 'external field' EPA - encouraged by the fact that the photon operators are same as the 'ordinary' EPA
- So assuming EPA can still be used we are left with the $1^{\text {st }}$ order external field process (Sokolv-Ternov). Known to be determined by the magnitude of Υ
-The $2^{\text {nd }}$ order external field processes need special treatment. Propagators can reach the mass shell, the x-sections can exceed S-T and the effect does not necessarily have a simple relationship with Υ

Daresbury 28.3.2008

EPA and the bunch field

$$
\mathrm{d} \sigma=\frac{\alpha}{4 \pi^{2}\left|q^{2}\right|}\left[\frac{(q P)^{2}-q^{2} p^{2}}{(p P)^{2}-p^{2} P^{2}}\right]^{1 / 2}\left(2 \rho^{++} \sigma_{\mathrm{T}}+\rho^{00} \sigma_{\mathrm{S}}\right) \frac{\mathrm{d}^{3} p^{\prime}}{E^{\prime}}
$$

- σ_{T} and σ_{S} are now cross-sections for the coherent pair production - need to investigate validity of putting q on the mass shell and neglecting σ_{s}
- The dependency on fermion momenta have to
be modified $P_{\mu} \rightarrow P_{\mu}+k_{\mu} \nu^{2} / 2(k p)$ and
$P^{2}->P^{2}+\nu^{2}$
- If fermion energy is large and fermion and field 3 -momenta are anti-parallel then $2^{\text {nd }}$ term is small
- More theoretical work to do to understand the range of validity of the EPA approx when external field is present

Deriving the Sokolov-Ternov equation

Sokolov-Ternov equation can be written down using the 'operator method' of Baier et al

$$
d W=-i \frac{\alpha m}{\sqrt{3} \pi \gamma}\left[\int_{z}^{\infty} K_{5 / 3}(z) d z+\frac{x^{2}}{1-x} K_{2 / 3}(z)\right] d x \text { where } z=\frac{2}{3 v \omega \epsilon_{i}} \frac{\omega_{f}}{\epsilon_{i}-\omega_{f}}
$$

but, more generally can be obtained within limits using full Volkov solutions
lets just try to get (discovering required approximations along the wav)

$$
d \sigma_{f i}=\frac{1}{v(2 \pi)^{2}} \frac{m^{2}}{4 \epsilon_{i} \omega_{i}} \delta\left(P_{i}-P_{f}\right) \sum_{i} \sum_{f}\left|T_{f i}\right|^{2} \frac{d p_{f} d k_{f}}{\epsilon_{f} \omega_{f}}
$$

-Matrix element contains one volkov solution per Feynman diagram order, so a product of solutions for S-T
-phase integral also contains an integration over the contribution from

(Partial) S-T derivation (continued)

 constant crossed field: $\quad \Psi_{p}^{V}(x)=E_{p}(x) u_{p}$$$
\begin{aligned}
A_{\mu}^{e}(x) & =a_{1 \mu}(k x) \\
\left(a_{1} a_{1}\right) & =-a^{2} \\
\left(a_{1} k\right) & =0
\end{aligned}
$$

$$
E_{p}(x)=\left[1+\frac{e}{2(k p)} k k_{1}(k x)\right]
$$

$$
\times \exp \left(-i q x+i \frac{e^{2} a^{2}}{2(k p)}(k x)-i \frac{e\left(a_{1} p\right)}{2(k p)}(k x)^{2}-i \frac{e^{2} a^{2}}{6(k p)}(k x)^{3}\right)
$$

Simplification 1: $\quad k|\mid p$

$$
\text { where } \quad q=p+\frac{e^{2} a^{2}}{2(k p)} k
$$

$$
F_{1, r}=\int_{-\infty}^{\infty} t \exp \left[i(r+Q) t-i Q \frac{t^{3}}{3}\right]=2 \pi i Q^{-\frac{2}{3}} \mathrm{Ai}^{\prime}(z)
$$

where

$$
\begin{array}{r}
Q=v^{2} \frac{\left(k k_{f}\right)}{\left(k p_{i}\right)\left(\left(k p_{i}\right)-\left(k k_{f}\right)\right)} \\
z=-(r+Q) Q^{-\frac{1}{3}}
\end{array}
$$

Simplification 2: $k \|-k_{f}$ and $\epsilon_{\mathrm{i}} \gg m_{e}$ then $Q=\frac{\nu^{2}}{\omega \epsilon_{i}} \frac{\omega_{f}}{\epsilon_{i}-\omega_{f}}$

- $\int(P, I) d$.$r yields r \rightarrow Q$
- $Q^{2 / 3} \mathrm{Ai}^{i}\left(\mathrm{Q}^{2 / 3}\right)=\mathrm{K}_{2 / 3}(2 \mathrm{Q} / 3)$

Tony Haring

$$
(\text { ST. }) z=\frac{2}{3 v \omega \epsilon_{i}} \frac{\omega_{f}}{\epsilon_{i}-\omega_{f}}(v o l k o v) z=\frac{2 v^{2}}{3 \omega \epsilon_{i}} \frac{\omega_{f}}{\epsilon_{i}-\omega_{f}}
$$

$2^{\text {nid }}$ order external field process:

Coherent Breit-Wheeler (CBW) process

Tony Hartin

- $2^{\text {nd }}$ order process contains twice as many Volkov E_{p} - Double integrals over products of 4 Airy functions mathematical challenge!
- spin structure same as ordinary Breit-Wheeler
fermions recieve a mass shift due to bunch field and the propagator can reach mass shell whenever $r \omega \sim \omega_{b}$

CBW cross-section with simplifications

$$
\frac{d \sigma_{C B W}}{d \Omega} \approx \frac{d \sigma_{B W}}{d \Omega} \int_{-\omega_{1} / \omega}^{\infty} \frac{d n}{\left[\left(n \omega \pm \omega_{1}\right)^{2}+\Gamma^{2}\right]^{2}} \boldsymbol{F}
$$

- Can write CBW diff x-section as the ordinary BW diff x -section times a function F and a resonance
- lower bound of integration is determined physically c of m energy must be at least 2 x 0.511 MeV
- F is an integration of products of Airy functions for crossed beam field - numerically difficult
- Γ is a resonance width determined from a self energy calculation

Calculation of Resonance widths

- The Electron Self Energy must be included in the Coherent Breit-Wheeler process
- This is a $2^{\text {nd }}$ order IFQED process in its own right.
- Renormalization/Regularization reduces to that of the non-external field case

Tony Hation

- The Electron Self Energy in external CIRCULARLY POLARSED e-m field
oriqinally due to Becker \& Mitter 1975 originally due to Becker \& Mitter 1975 for low field intensity parameter $(\mathrm{ea} / \mathrm{m})^{2}$. Has been recalculated for general field intensity parameter
- ESE in external CONSTANT CROSSED field is due to Ritus, 1972
- Optical theorem: the imaginary part of the ESE has the same form as the Sokolov-Ternov equations

Daresbury 28.3.2008

Summary and things to do

- 4-fermion processes should be modified to include the bunch fields
- Volkov solutions of Dirac field with external field replace all fermion lines
- EPA has to be studied for validity when external fields are included
- $1^{\text {st }}$ order IFQED beamstrahlung process calculated using Volkov solutions and compared to Sokolov-Ternov equation. Small difference in the argument of McDonalds function discovered. Needs more investigation
- $2^{\text {nd }}$ order IFQED Coherent Breit-Wheeler discussed. Calculation has some mathematical challenges

