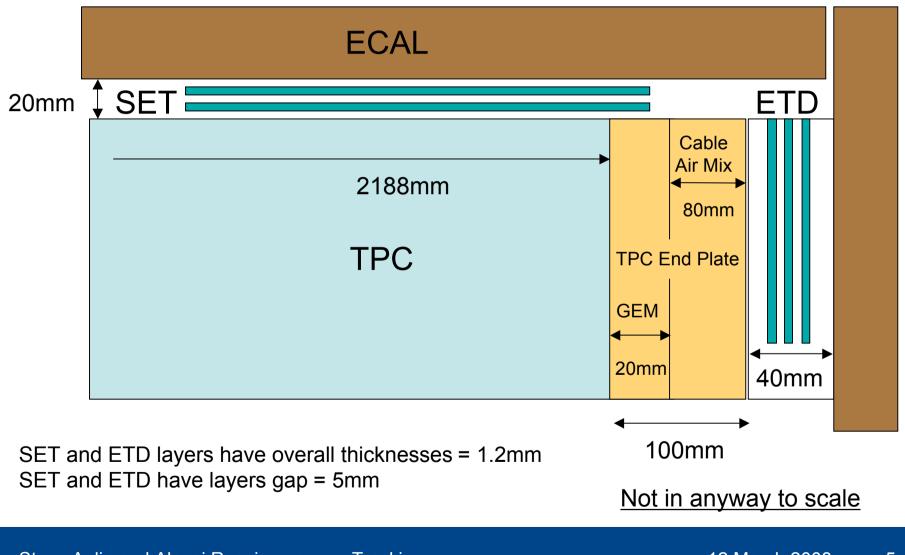
Tracking Status

Steve Aplin and Alexei Raspiareza

ILD Optimisation Meeting 12 March 2008

Introduction

- Several Modifications to code which feeds into the Tracking code
- The Tracking code itself has not been modified

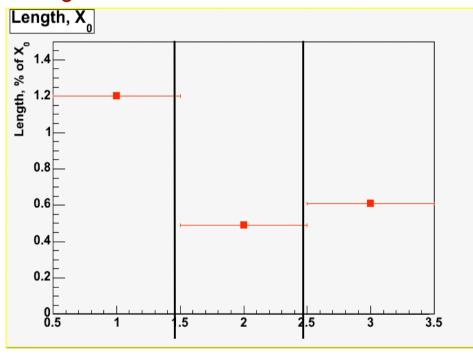


- TPC Digitiser
 - Modification of TPC hit creation: Ring Based
 - Point Resolutions as suggested by LCTPC
- VTX Digitiser
 - Smearing along ladders

Geometry

- Implementation of new Mokka drivers SIT, FTD, ETD, SET
- Geometry correctly propagated through GEAR
- Update of MaterialDB: used by Kalman Filter in Tracking code

Geometry



New SIT Driver

- Sit01 (support structure + sensitive layer)
 - Beryllium support, thickness = 1mm
 - Si sensitive layer, thickness = 0.2mm
 - Support cylinder is inside sensitive cylinder
 - Two layers : $R_{in} = 160$ mm, $R_{out} = 270$ mm
- Sit02 (sensitive layer + support structure)
 - Si sensitive layer, thickness = 0.2mm
 - Graphite support, thickness = 1mm
 - Support cylinder is outside sensitive cylinder
 - Two layers : $R_{in} = 160$ mm, $R_{out} = 270$ mm
- Updates of Sit00, Sit01, Sit02 Mokka drivers
- Changes to MaterialDB processor

New SIT Driver:Material

X_0 (%) per SIT layer

Example steering for Sit01

Gear steerings for Sit01/02 include: •Radii and half length of support cyl. •Parameter SITModel to tell Sit00 from Sit01/02 (0=Sit00, 1=Sit01/02)

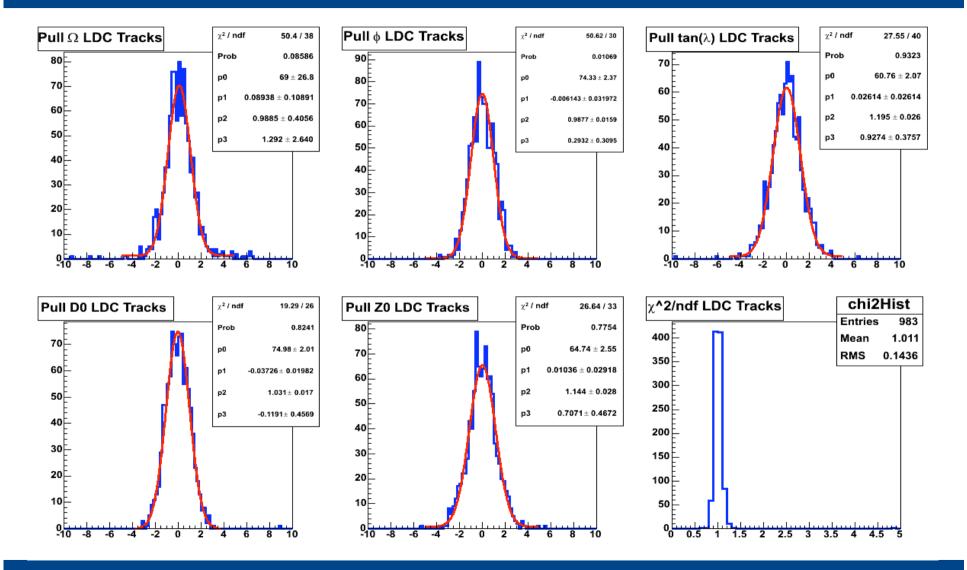
LDC01_05Sc & LDCPrime_01Sc both use Sit01 driver

Steve Aplin and Alexei Raspiareza Tracking

New FTD driver

- FTD01 (old driver) scaled superdriver SFtd02
 - 3 first disks of heavy Si (8.22 g/cm³)
 - 4 last disks of normal Si (2.33 g/cm^3)
 - disk thickness = 0.3 mm
 - R_{in} = 29, 32, 46, 76, 106, 137, 167 [mm]
 - R_{out} = 140, 140, 210, 270, 290, 290, 290 [mm]
 - Z = 220, 350, 500, 850, 1200, 1550, 1900 [mm]
- FTD02 (new driver) scaled superdriver SFtd02
 - all 7 disks of normal Si (2.33 g/cm³)
 - Disk thickness = 0.27 mm
 - R_{in} = 29, 32, 35, 51, 72, 93, 113 [mm]
 - R_{out} = 140, 140, 210, 270, 290, 290, 290 [mm]
 - Z = 200, 320, 440, 550, 800, 1050, 1300 [mm]
- FTD00 is currently used in LDC01_05Sc & LDCPrime_01Sc

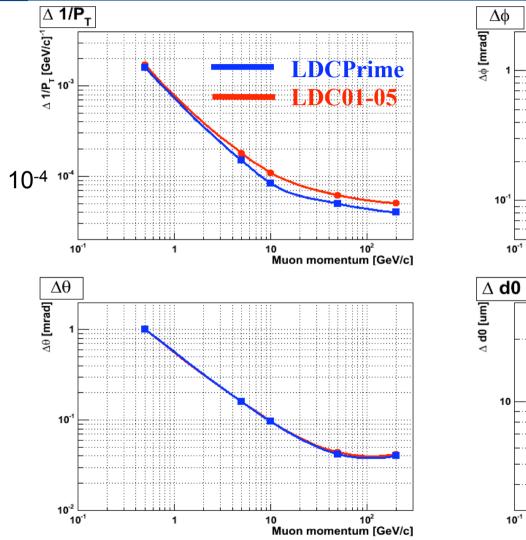
Digitisation

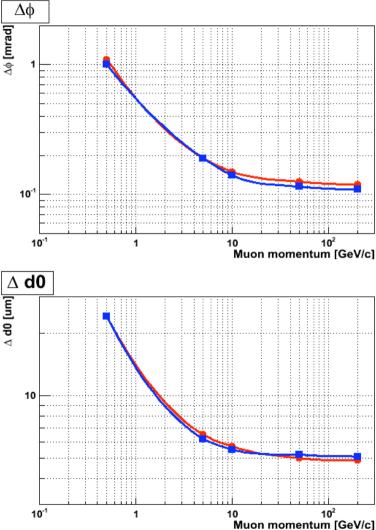

- Digitization procedure for TPC
 - -> Smearing of r- φ hit position according to formula

$$\sigma_{r-\varphi}^{2} = \sigma_{0}^{2} + D \cdot L_{drift}$$

+ σ_0^2 & σ_D^2 are specified as Marlin parameters : $\sigma_0 = 0.055$ mm , D = 0.003mm

- σ_z is assumed to be constant along z : $\sigma_z = 0.4$ mm [suggested by R. Settles]
- Simple digitization is done by Gaussian smearing of SimTrackerHits
 - → VTX, SIT, TPC : $r-\phi$ & z positions are smeared
 - VTX ----- : $\sigma_{r,\phi} = \sigma_z = 4\mu m$ (smearing along ladder plane)
 - SIT ------ : $\sigma_{r,\phi} = \sigma_z = 10 \mu m$ (smearing along cylindrical surface)
 - → Planar detectors (FTD) : (x,y) is smeared isotropically ($\sigma_x = \sigma_y = 10 \mu m$)
- ⇒ Spatial resolutions are stored in the vector of hit position covariance matrix (LCIO TrackerHit class) ⇒ they are specified once and forever at the digitization step and used later on by fitting routine (no duplication in Tracking code)


μ ± 10GeV θ =80.5 LDCPrime_01Sc



Steve Aplin and Alexei Raspiareza

Tracking

Track Parameter Resolution

Steve Aplin and Alexei Raspiareza

Conclusion

- We need a straight forward way to run Mokka only for Tracking studies
- Super Drivers for SILC need to be entered into the database
- Tracking with new SILC detectors not quite there yet "out of the box"
- Tracking using SET should be straight forward
- Tracking with ETD may be more complicated a lot of material is in between