Vertex Detector EOI RAL LOI Preparation

Discuss plans for making progress on vertex detector design

- Much work on "generic" parameters already done by LCFI
- What simulations do we want/need?
 - For our own design purposes
 - For LOI
- Other issues
 - Cabling and electronics
 - Sensors

Simulation

- What is needed to understand basic resolution parameters, especially in the forward direction?
 - We know much of this information already. IP resolution will be determined by mass, inner radius, and pixel size. More complex questions include:
 - How resolution is degraded with angle in the forward direction
 - Optimizations
 - Decreased time resolution technologies in outer layers
 - Non square pixels in forward region?
 - Vertex pixel size optimization (power/pixel size tradeoffs)
 - We need to integrate Nick's new code
 - Understand where it is needed (forward cluster shape is one example)
- This is not part of the LOI benchmark study, but to validate our own design

Simulation II

- What is needed to understand pattern recognition performance?
 - Overall tracking in 3D over full angular range
 - Ability to change geometries and sensor characteristics
 - Ability to add beam background
- What is needed to understand physics performance? Are the standard benchmarks what we want? Would like a mode or modes that allows us to:
 - Cleanly study capabilities
 - Emphasize forward tracking (SiD strength)
 - Incrementally build understanding adding more complex studies as appropriate
 - Interact efficiently with benchmarking studies groups
- Do any of the standard benchmarks give us what we need?

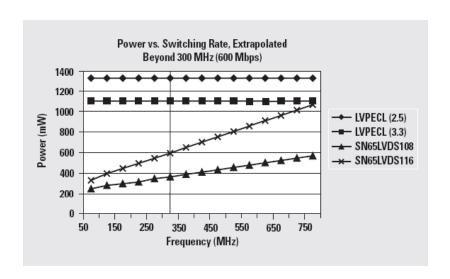
Simulation III (from Norm)

- $e^+e^- \rightarrow ZH$, $H \rightarrow e^+e^- X$, $\mu^+\mu^- X$ (M_H =120 GeV, E_{cms} =250 GeV)
 - Simple events, no vertexing or forward emphasis
- $e^+e^- \rightarrow ZH$, $H \rightarrow cc$, $Z \rightarrow vv$ (M_H =120 GeV, E_{cms} =250 GeV)
 - Clean test of vertexing and charm tagging, no specific forward emphasis may be a good start. Is the physics in BR?
- $e^+e^- \rightarrow ZH$, $H \rightarrow cc$, $Z \rightarrow qq$ ($M_H = 120 GeV$, $E_{cms} = 250 GeV$)
 - Adds pattern recognition and jet reconstruction not a place to start
- $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^- (E_{cms} = 500 \text{ GeV})$
 - Hard tau tracks, pattern recognition of locally dense tracks
 - A_{fb} of this might be an interesting way to look at forward tracking
- $e^+e^- \rightarrow tt$, $t \rightarrow bW$, $W \rightarrow qq'$ ($M_{top} = 175 \text{ GeV}$, $E_{cms} = 500 \text{ GeV}$)
 - Good test of vertexing but complex, also depends on PFlow
- $e^+e^- \rightarrow \chi^+ \chi^- / \chi_2^0 \chi_2^0 (E_{cms} = 500 \text{ GeV})$
 - Mostly a test of particle flow, calorimetry

None of these are really perfect

Benchmarks

- I would prefer studies which do not rely on sophisticated analysis techniques (neural nets ...) but focus on resolutions and efficiencies.
- It would be nice if this overlaps with a benchmark reaction
 - Look at single mode
 - Able to directly measure mass resolution
 - Able to measure vertex resolution and efficiency
 - Charm might be a good candidate a single vertex with short lifetime
- A_{FB} in e⁺e⁻ →bb, cc, while not on the compulsory list, is an appealing reaction to start with.


Cabling and Interconnect

- Power delivery design
 - Serial power / DC-DC conversion / Capacitive switching
 - Controls
 - Regulation locations, number of cables to outside
 - Division of modules?
- Cable routing. Along beam pipe or along support cylinder
- Optical or electrical interconnect
 - power required, location
- Sensor/cable interface design.
- Lorentz forces.
- Pulsed power R&D This an important aspect of any ILC based electronics system and needs to be studied.

Interconnects

- Optical or electrical similar power requirements
 - 10 mw/line with modest frequency dependence
- Rough estimates needed for voltage drop on power lines (RY guess 5 V for 25 V supply)

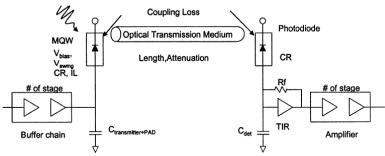
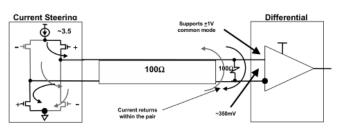



Fig. 1. Schematic showing board-level high-speed optical interconnect.

FIGURE 1.

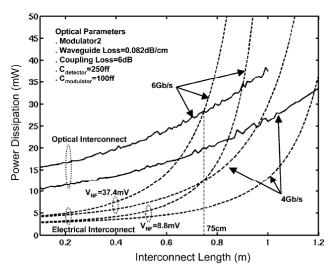


Fig. 9. Power comparison between electrical and optical interconnects for modulator 2.

Sensors

- Again, to what extent do we want a generic design?
- Rolling shutter vs time stamp model
- Thickness
 - How does thickness affect large angle track resolution?
- Charge sharing model
 - fully depleted vs diffusion
 - signal/noise expected
- Disk sensors
 - Type
 - Pixel size
 - segmentation