Connecting LHC, ILC, and Quintessence

K.C. Kong

Fermilab

LCWS08 and ILC08
November 16-20, 2008
University of Illinois at Chicago

Overview

• This talk:

```
dark matter+dark energy energy connections at LHC/ILC ("kination-dominated quintessence" ) in the context of low energy supersymmetry
```

• Based on:

Chung, Everett, Kong, Matchev, JHEP 0710:016,2007

Connecting Collider Physics and Cosmology

- Desired collider connection with cosmology:
 - understand dark energy and dark matter
- Dark Energy
 - cosmological constant: CC problem sensitive to entire spectrum, couplings, SUSY breaking
 - quintessence : scalar field Φ with at most gravitational strength couplings to SM
- Extremely difficult to probe directly at colliders

Dark Matter Connection

- Contrast: direct collider probes of dark matter
 - WIMP hypothesis (thermal relic χ): motivated in SUSY models (LSP), extra dimensions (LKP), little Higgs (LTP), ...
- Cosmological abundance depends on:
 - couplings and masses (collier measurements)
 - freeze out $\Gamma_A < H$ (cosmology)
- Indirect dark energy connection:
 - consider usual thermal WIMP dark matter, but nonstandard cosmological expansion (quintessence)

Dark Matter and Dark Energy Connection

- If dark energy is quintessence:
 - freeze out process can be affected!
 - Φ energy density can dominate at freeze out: $T_U \sim 1$ GeV
 - but must be small (< 20 %) by BBN: $T_0\sim 10^{-3}$ GeV $\rho_\Phi\sim a^{-3(1+w_\Phi)}$ must dilute faster than $\rho\sim a^{-4}$

$$\Phi \text{ behaves like } \begin{cases} \text{radiation} & a^{-4} \\ \text{matter} & a^{-3} \\ \text{inflation} & a^{-0} \\ \text{kination} & a^{-6} \end{cases}$$

(P. Salati, astro-ph/0207396)

Kination Domination and DM abundance

- Definition: $\frac{1}{2}\dot{\Phi}^2\gg V(\Phi)$, ρ_R , ρ_M
 - freeze out at higher T, larger abundance for same $\langle \sigma_A v \rangle$
 - e.g. p-wave annihilator:

$$\frac{\Omega_{\chi}^{(K)}}{\Omega_{\chi}^{(U)}} \sim \frac{g_{*S}(T_U)}{g_{*S}(T_0)} \frac{T_U^2}{T_K T_0} \frac{\sqrt{\eta_{\Phi}}}{\sqrt{g_{*S}(T_U)/2}}$$

$$\frac{\rho_{\Phi}}{\rho_{\gamma}} \propto a^{1-3w_{\Phi}}$$

$$\eta_{\Phi} = \left(\frac{\rho_{\Phi}}{\rho_{\gamma}}\right)_{T_0} (0 \le \eta_{\Phi} \le 1)$$

– Ω_χ increased from standard scenario! (up to 10^3 enhancement)

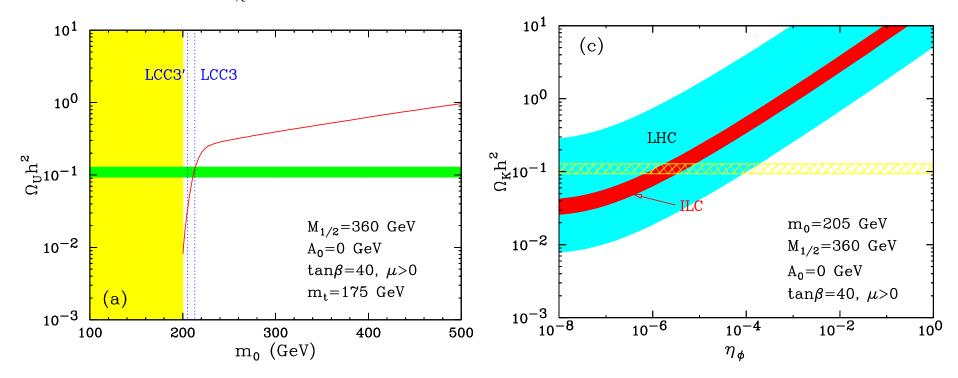
Kination Domination and Neutralino DM

- Mismatch b/w collider LSP and direct/indirect search
- Implications for favored MSSM parameter space:
 - near resonances: $2m_{\chi}=m_{int}$
 - coannihilations (not as effective)
 - resurrect wino, higgsino dark matter scenarios
 - previous studies: LHC probes of kination domination (Profumo, Ulio 2003)
- Good news for direct/indirect dark matter searches
 - larger $\langle \sigma_A v \rangle$ for fixed $\Omega_\chi h^2$

Current study: ILC probes of dark energy

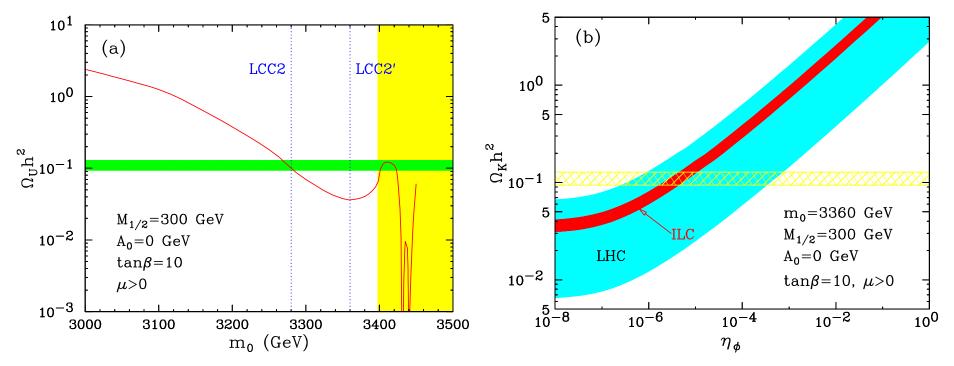
Goal: precision to which LHC/ILC can probe kination scenario

• Procedure:

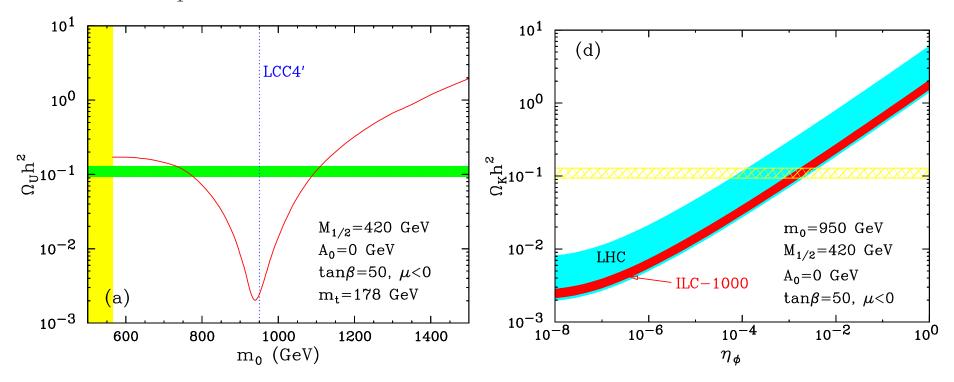

"recycle" ILC study points of Baltz, Battaglia, Peskin, Wizansky, hep-ph/0602187

(mSUGRA, masses in GeV)

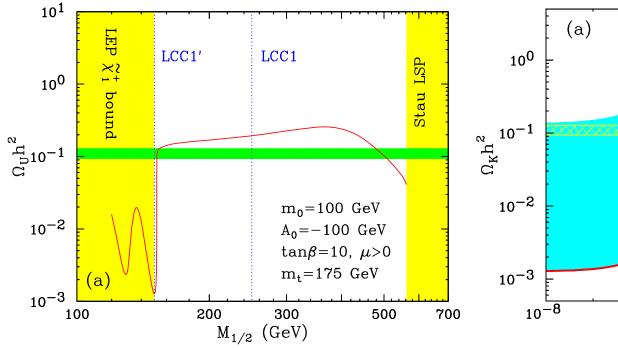
bulk LCC1
$$m_0=100,\ M_{1/2}=250,\ \tan\beta=10,\ A_0=-100,\ \mu>0$$
 LCC1' $M_{1/2}=150$ focus LCC2 $m_0=3280,\ M_{1/2}=300,\ \tan\beta=10,\ A_0=0,\ \mu>0$ LCC2' $m_0=3360$ stau LCC3 $m_0=213,\ M_{1/2}=360,\ \tan\beta=40,\ A_0=0,\ \mu>0$ LCC3' $m_0=205$ funnel LCC4 $m_0=380,\ M_{1/2}=420,\ \tan\beta=53,\ A_0=0,\ \mu>0$ LCC4' $m_0=950$ tan $\beta=50$ $\mu<0$

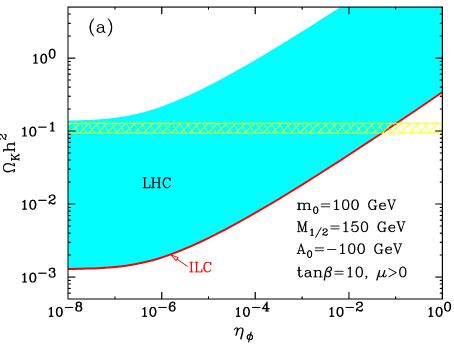

Stau coannihilation region

- ullet mSUGRA LCC3 study point with adjusted m_0
- $m_\chi \approx 140$ GeV, dominant decay of χ_2^0 : $\chi_2^0 \to \tau^+ \tau^- \chi_1^0 \to {\rm taus}$ are soft.
- ullet LHC: $m_{ ilde{ au}}-m_{ ilde{\chi}}\sim 40$ GeV (LHC can only rule out large mass splitting)
- ullet ILC: $m_{ ilde{ au}}-m_{ ilde{\chi}}\sim 5$ GeV, down to about ± 1 GeV


Focus point region

- ullet mSUGRA LCC2 study point with adjusted m_0
- ullet χ_1^0 is predominantly bino but has a non-negligible Higgsino component
- Sfermions are very heavy but the relic density is determined primarily by the neutralino and chargino sector \rightarrow uncertainty in $\Omega_U h^2$ as 82% at the LHC and 14% at the ILC.


A-funnel study point


- mSUGRA LCC4 study point with adjusted parameters
- ullet LHC: $m_{\chi_1^0}$ within 17 GeV and m_A within 1.5 GeV
- $\bullet~$ ILC: $m_{\chi_1^0}$ within 1.4 GeV

Bulk region

- ullet mSUGRA LCC1 study point with adjusted $M_{1/2}$
- $\bullet~$ LHC not precise enough to resolve Δm_χ near resonances
- ILC better!

Conclusion and Outlook

- Seeking collider-cosmology connections:
 - important goal in LHC/ILC era!
- Kination-dominated quintessence:
 - enhancement mechanism for DM abundance
 - ILC significant probe of such cosmological scenarios
- Many issues yet to be explored
 - TeV physics implications, cosmological phenomena
- Option if mismatch of collider + cosmo data
- May be best probe of dark energy at colliders!