

Jan Kalinowski **U Warsaw**

Neutralino DM in the USSM: an update

Outline

- Motivation
- USSM model
- DM phenomenology
 - > Relic abundance
 - > Direct searches
- Collider connection
- Summary

Based on collaboration with S. King and J. Roberts arXiv:08112204

Motivation

Known properties of dark matter

- > WIMP a weakly interacting, massive, neutral and stable particle
- the measured density 0.1099 +- 0.0062

Many models provide candidates for WIMP's

Here we consider SUSY

- stabilises the Higgs mass
- gives radiative EW symmetry breaking
- predicts unification of gauge couplings
- provides a dark matter candidate

most preferred neutralinos – mixtures of neutral spartners of gauge bosons and Higgs

But all is not well

Problems of minimal SUSY

- Cosmological problem
 - bino DM: generally gives $Ω_{CDM} h^2 \gg Ω_{CDM}^{WMAP} h^2$
 - ightharpoonup wino/Higgsino DM: generally gives $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$
 - only small parts of the "octopus" in the cMSSM left
- ightharpoonup problem : why in $W \ni \mu H_d H_u$ is of order EW scale

Motivation to go beyond MSSM

Promote μ to a vev of some scalar field S: $\mu = \lambda \langle S \rangle$

➤ NMSSM: invoke Z₃ to avoid massless axion

$$W \ni \lambda S H_d H_u + \kappa S^3$$

Nilles ea, Frere ea Derendinger ea Ellis ea, Ellwanger ea,

...

 \triangleright U(1)-extended SUSY: promote Z_3 to the gauge symmetry

Cvetic ea, Suematsu ea, Ma Erler ea

Extra U(1) SUSY

- SM fields charged under new U(1)_x
- new fermions are needed to cancel anomalies
- elegant solution: identify $U(1)_x$ as a subgroup of E_6 and cancel anomalies by assuming matter in complete 27 representations
- requiring zero U(1)_X charges of RH neutrino specifies the theory uniquely as the E₆SSM of King, Moretti and Nevzorov hep-ph/0510419

	Q	u^c	d^c	L	e^c	N^c	S	H_2	H_1
$\sqrt{\frac{5}{3}}Q_i^Y$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
$\sqrt{40}Q_i^X$	1	1	2	2	1	0	5	-2	-3

Ma Barger ea, Kang ea

Sketch of the E₆SSM

Extra U(1) SUSY

- SM fields charged under new U(1)_x
- new fermions are needed to cancel anomalies
- elegant solution: identify $U(1)_x$ as a subgroup of E_6 and cancel anomalies by assuming matter in complete 27 representations
- requiring zero U(1)_X charges of RH neutrino specifies the theory uniquely as the E₆SSM of King, Moretti and Nevzorov hep-ph/0510419

	Q	u^c	d^c	L	e^c	N^c	S	H_2	H_1
$\sqrt{\frac{5}{3}}Q_i^Y$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
$\sqrt{40}Q_i^X$	1	1	2	2	1	0	5	-2	-3

Ma Barger ea, Kang ea

- many extra fields make the detailed studies difficult
- we define USSM = $SU(3)xSU(2)xU_Y(1) \times U_X(1)$ as a LE subset of E₆SSM assuming extra states and exotics heavy

Suematsu Yanagida de Carlos Espinosa Cvetic et al Barger ea, King ea, Cohen Pierce

Phenomenology of the USSM

Features:

extra superpotential term:

$$W_{USSM} = W_{MSSM}(\mu = 0) + \lambda \hat{S} \hat{H}_d \hat{H}_u$$

extra soft terms:

$$\mathcal{L}_{soft} \ni m_S^2 |S|^2 + (\lambda A_\lambda S H_d H_u + h.c.)$$

- new particles in the low-energy spectrum
 - a gauge boson Z' (that mixes a little with Z)
 - > extra Higgs (usually H₃, dominantly singlet with mass ~ Z')
 - two new neutralinos: a singlino and a bino'

Phenomenology changes quite significantly

USSM - the neutralino sector

The neutralino mass matrix in the initial base

$$\mathcal{M}_{6} = \begin{pmatrix} \mathcal{M}_{4} & X \\ X^{T} & \mathcal{M}_{2} \end{pmatrix} = \begin{pmatrix} M_{1} & 0 & -M_{Z} c_{\beta} s_{W} & M_{Z} s_{\beta} s_{W} & 0 & 0 \\ 0 & M_{2} & M_{Z} c_{\beta} c_{W} & -M_{Z} s_{\beta} c_{W} & 0 & 0 \\ -M_{Z} c_{\beta} s_{W} & M_{Z} c_{\beta} c_{W} & 0 & -\mu & -\mu_{\lambda} s_{\beta} & Q'_{1} g'_{1} v c_{\beta} \\ M_{Z} s_{\beta} s_{W} & -M_{Z} s_{\beta} c_{W} & -\mu & 0 & -\mu_{\lambda} c_{\beta} & Q'_{2} g'_{1} v s_{\beta} \end{pmatrix}$$

$$0 & 0 & -\mu_{\lambda} s_{\beta} & -\mu_{\lambda} c_{\beta} & 0 & Q'_{5} g'_{1} v_{5} \\ 0 & 0 & Q'_{1} g'_{1} v c_{\beta} & Q'_{2} g'_{1} v s_{\beta} & Q'_{5} g'_{1} v_{5} \end{pmatrix}$$

Important features:

> since Z' mass \blacklozenge 1TeV, sets the scale of v_s new sector weakly coupled to MSSM neutralinos

Choi, Haber, JK, Zerwas

 $\mu = \lambda \frac{v_s}{\sqrt{2}}$ and $\mu_{\lambda} = \lambda \frac{v}{\sqrt{2}}$

- no singlino mass term:
 - mini see-saw structure for singlino/bino'
 - > never have a dominantly bino' LSP

USSM – relic abundance DM

Neutralino mass matrix

LSP has new annihilation channels via Z' or λSH_dH_u

We implement USSM into MicrOmegas

De Carlos Espinosa Cvetic ea Barger ea

USSM – direct searches

Different interplay of diagrams for spin dependent and spin independent parts

$$\mathcal{L}_{\text{eff}} = A_q \left(\bar{\chi}_1 \gamma^{\mu} \gamma_5 \chi_1 \right) \left(\bar{q} \gamma_{\mu} \gamma_5 q \right) + B_q \left(\bar{\chi}_1 \chi_1 \right) \left(\bar{q} q \right)$$

$$\begin{aligned} g_2^2 \sum_{i=1,2} \frac{\left|B_q^{iL}\right|^2 + \left|B_q^{iR}\right|^2}{m_{\tilde{q}_i}^2 - (m_{\tilde{\chi}_0} - m_q)^2} - \frac{G_F}{\sqrt{2}} \left[|N_{13}|^2 - |N_{14}|^2 \right] I_q^3 \\ - \frac{g_1'^2}{4m_{Z'}^2} \left[Q_1 |N_{13}|^2 + Q_2 |N_{14}|^2 + Q_s |N_{15}|^2 \right] \left(Q_Q + Q_{\bar{q}} \right) \end{aligned}$$

$$\frac{g_2^2 \sum_{i=1,2} \frac{\left|B_q^{iL}\right|^2 + \left|B_q^{iR}\right|^2}{m_{\tilde{q}_i}^2 - (m_{\tilde{\chi}_0} - m_q)^2} - \frac{G_F}{\sqrt{2}} \left[|N_{13}|^2 - |N_{14}|^2 \right] I_q^3}{-\frac{g_1'^2}{4m_{Z'}^2} \left[Q_1 |N_{13}|^2 + Q_2 |N_{14}|^2 + Q_s |N_{15}|^2 \right] (Q_Q + Q_{\bar{q}})} - \frac{g_2^2}{8} \sum_{i=1,2} \frac{\operatorname{Re}(B_q^{iL} B_q^{iR^*})}{m_{\tilde{q}_i}^2 - (m_{\tilde{\chi}_0} - m_q)^2} - \frac{g_1'^2}{m_{H_k}^2} \left[Q_1 |N_{13}|^2 + Q_2 |N_{14}|^2 + Q_s |N_{15}|^2 \right] (Q_Q + Q_{\bar{q}}) - \frac{h_q}{2\sqrt{2}} \sum_{k=1}^3 \frac{\operatorname{Re}(G_k) + \operatorname{Re}(G_k') + \operatorname{Re}(G_k'')}{m_{H_k}^2} \left\{ \begin{array}{c} \mathcal{O}'_{1k} & \text{for } q = d \\ \mathcal{O}'_{2k} & \text{for } q = u \end{array} \right\}$$

$$G_{k} = g_{2} (N_{12} - t_{W} N_{11}) (N_{14} \mathcal{O}'_{2k} - N_{13} \mathcal{O}'_{1k})$$

$$G'_{k} = -2 g'_{1} N_{16} (Q_{1} N_{13} \mathcal{O}'_{1k} + Q_{2} N_{14} \mathcal{O}'_{2k} + Q_{S} N_{15} \mathcal{O}'_{3k})$$

$$G''_{k} = \sqrt{2} \lambda \left[N_{15} (N_{13} \mathcal{O}'_{2k} + N_{14} \mathcal{O}'_{1k}) + N_{13} N_{14} \mathcal{O}'_{3k} \right]$$

Choi ea. **Jarecka**

Phenomenology: parameters

- > gauge coupling unification $g_X = g_Y, g_2$
- \triangleright v_S set by Z' mass $M_{Z'} \sim g_X Q_S v_S =$ 950 GeV
- \rightarrow λ set by required $\mu = \lambda v_S/\sqrt{2} = 600 \text{ GeV}$
- $ightharpoonup A_{\lambda}$ set by mass of pseudoscalar $M_A=500~{\rm GeV}$
- \rightarrow tan $\beta = 5$
- > universal scalar masses and trilinear couplings $M_{\tilde{f}}=800$ GeV, $M_A=500$ GeV

as a function of
$$M_1' = M_1 \sim M_2/2$$

Neutralino mass spectrum

Relic abundance

Relic abundance

Relic abundance

Direct searches

Elastic scattering on a nucleon

J. Kalinowski

Neutralino DM in the USSM

Collider connection

- neutralino production cross sections at e+ethe presence of Z' affects the production cross sections
- > neutralino decays $\tilde{u}_R o u \tilde{\chi}_5^0 o u[\ell \tilde{\ell}_R] o u \ell \ell \tilde{\chi}_1^0$ but branching fractions modified
- > in transition zones radiative $\tilde{\chi}_i^0 o \tilde{\chi}_1^0 \gamma$ decays might dominate
- new decay modes of Higgses, etc.

Summary

- ❖ USSM an elegant solution to the mu problem
- new states: scalar Higgs, Z' and two neutralinos
 - relaxed bounds on lightest Higgs mass
 - neutralino sector quite complicated
 - in a weakly coupled regime under good theoretical control
- with extra U(1) gaugino heavy
 - lightest neutralino can be singlino-dominated
 - phenomenology at e+e- and LHC quite different
 - candidate for CDM with different nature from MSSM or NMSSM
 - more options, but still needs tuning to match WMAP
 - can be distinguished by studying neutralino and Higgs sectors at colliders
- ❖ Next step towards full E₆SSM: add more singlet superfields, exotics,

Scenario A: M₁' M₁

