Constraining the early universe with dark matter

Mitsuru Kakizaki (LAPTH)

November 18, 2008

LCWS08 @ University of Illinois, Chicago

In collaboration with

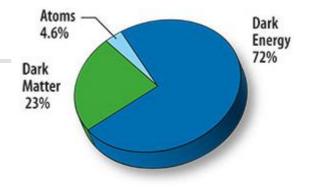
- Manuel Drees (Bonn Univ.)
- Hoernisa Iminniyaz (Univ. of Xinjiang)
- Suchita Kulkarni (Bonn Univ.)

Refs:

- PRD76 103524 (2007)
- work in progress

1. Motivation

- Observations of
 - cosmic microwave background
 - structure of the universe
 - etc.



[http://wmap.gsfc.nasa.gov]

Non-baryonic dark matter: $\Omega_{\rm DM}h^2 = 0.1143 \pm 0.0034$

Physics beyond the standard model (SM) of particle physics necessary

 \bullet Weakly interacting massive particles (WIMPs) $~\chi$ are good candidates for dark matter (DM)

The predicted thermal relic abundance naturally explains the observed dark matter abundance: $\Omega_{\chi, standard} h^2 \sim 0.1$

• Neutralino (LSP); 1st KK mode of the B boson (LKP); etc. November 18, 2008 Mitsuru Kakizaki

Investigation of early universe using DM abundance

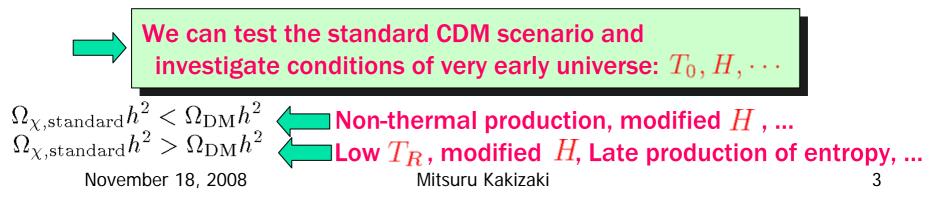
• The abundance of thermal relics (e.g. DM) is determined by the Boltzmann equation: $\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma_{
m eff} v \rangle (n_{\chi}^2 - n_{\chi,
m eq}^2)$

(and the initial temperature: T_0 .)

Numerical calculation needed in evaluating the relic density in many cases

Analytic methods should be developed in various scenarios

 \bullet The (effective) cross section σ_{eff} can be determined from collider and DM detection experiments



Outline

Dark matter = thermal WIMPs constraints on the reheating temperature and on modifications of the Hubble parameter

- Analytic treatment that connects the hot and cold relic solutions and late entropy production by semi-relativistic relics
 - **1**. Motivation
 - **2.** Standard calculation of WIMP abundance
 - **3.** Constraints on the very early universe from WIMP dark matter
 - 4. Abundance of semi-relativistic relics and its application
 - **5**. Summary

2. Standard calculation of WIMP abundance

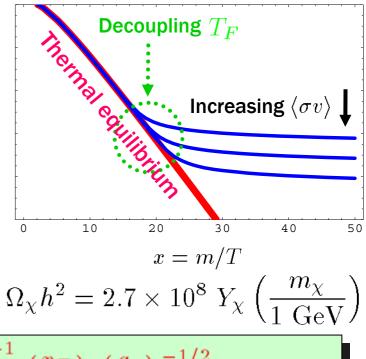
[Scherrer, Turner, PRD33(1986); Griest, Seckel, PRD43(1991); ...]

- High temperature $(T \ge T_F)$:
 - Thermal equilibrium was maintained:

 $\Gamma = n_{\chi} \langle \sigma v \rangle > H = R/\dot{R}$

- χ decoupled when non-relativistic in RD era: $H = \frac{\pi T^2}{M_{\text{Pl}}} \sqrt{\frac{90}{g_*}}$ $\langle \sigma v \rangle = a + 6b/x + \mathcal{O}(1/x^2),$ $n_{\chi,\text{eq}} = g_{\chi} (m_{\chi}T/2\pi)^{3/2} e^{-m_{\chi}/T}$
- Low temperature $(T \leq T_F)$:
 - WIMP production negligible :

Co-moving number density $Y_{\chi} = n_{\chi}/s$



$$\square \Omega_{\chi,\text{standard}} h^2 \simeq 0.1 \times \left(\frac{a+3b/x_F}{10^{-9} \text{ GeV}^{-2}}\right)^{-1} \left(\frac{x_F}{22}\right) \left(\frac{g_*}{90}\right)^{-1/2} \sim \Omega_{\text{DM}} h^2$$

November 18, 2008

3. Constraints on the very early universe from WIMP DM

• Equilibrium case: $\sigma \longrightarrow \Omega h^2$; $\Omega_{\chi} h^2$ is independent of T_0 Out-of-equilibrium case: $\sigma \nearrow \longrightarrow \Omega h^2 \checkmark$; $T_0 = m_{\chi}/x_0 \checkmark \longrightarrow \Omega h^2 \checkmark$ [Giudice,Kolb,Riotto(2001), Gelmini,Gondolo(2006), ...] Thermal relic abundance in the RD universe: $\Omega_{\gamma}h^2$ 26 10^{-3} 10-4 $0.8 < \Omega_{\rm DM} h^2 < 0.12$ 10⁻² 24 0.1 Requirement that $\Omega_{\chi}h^2 \simeq 0.1$ 22 ×° 20

18

16

10⁻¹⁰

Mitsuru Kakizaki

10⁻⁹

a (GeV $^{-2}$)

b = 0

6

 10^{-7}

10⁻⁸

Lower bound on the initial temperature: $T_0 > m_{\chi}/23$

November 18, 2008

Modified expansion rate

Various cosmological models predict a non-standard early expansion

 [e.g. Scherrer et al., PRD(1985); Salati, PLB(2003);
 Fernengo et al., PRD(2003); Chung et al., PRD (1999); ...]

 Predicted WIMP relic abundances are also changed

• When WIMPs were in full thermal equilibrium, in terms of the modification parameter $A(x) = H_{\rm st}(x)/H(x)$ the relic abundance is

$$\Omega_{\chi}h^{2} = 0.1 \left(\frac{I(x_{F})}{8.5 \times 10^{-10} \text{ GeV}^{-2}}\right)^{-1}$$
$$I(x_{F}) = \int_{x_{F}}^{\infty} dx \frac{\sqrt{g_{*}} \langle \sigma v \rangle A(x)}{x^{2}}, \ x_{F} = \ln \left[\sqrt{\frac{45}{\pi^{5}}} \xi m_{\chi} M_{\text{Pl}} g_{\chi} \frac{\langle \sigma v \rangle A(x)}{\sqrt{xg_{*}}}\right]\Big|_{x=x_{F}}$$

If A(x) = 1, $x_F = x_{F,st}$ and we recover the standard formula

This formula is capable of predicting the final relic density correctly

November 18, 2008

Constrains on modifications of the Hubble parameter

• In terms of $z \equiv T/m_{\chi} = 1/x$ we need to know A(z) only for $z_{BBN} = 10^{-5} - 10^{-4} \le z \le z_F \sim 1/20 \ll \mathcal{O}(1)$ \Rightarrow This suggests a parametrization of A(z) in powers of $(z - z_{F,st})$: $A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + \frac{1}{2}(z - z_{F,st})^2 A''(z_{F,st})$ subject to the BBN limit: $0.8 \le k \equiv A(z \rightarrow z_{BBN}) \le 1.2$ x_i : Maximal temperature where • Once we know σ_{ab} , we can constrain A(z): $\Omega_{\gamma}h^2$ $a = 2.0*10^{-9} \text{GeV}^{-2}$ b = 0 1.3 a = 2.0*10⁻⁹GeV 1.2 300 0.08 1.1 000 A'(z_{F,st}) 100 0.10 H(x) > 0 for $x_0 <$ 100 0.12 0 0.8 $A''(z_{F,\mathrm{st}})$ $\rightarrow z_{\rm BBN}$) -100 0.5 1.5 Ω A(z_{F.st} A(ZF st) depends on all H(T) \square Larger allowed region for $H(T_F)$ November 18, 2008 Mitsuru Kakizaki 8

4. Abundance of semi-relativistic relics and entropy production

• Precise evaluation of the abundance of particles that freeze out when they are semi-relativistic $(x_F \sim 3)$ is complicated

Goal: simple analytic treatment that describes the transition from non-relativistic to relativistic relics

Assume the Maxwell-Boltzmann distribution:

 $Y_{\chi,eq} \equiv \frac{n_{\chi,eq}}{s} = 0.115 \frac{g_{\chi}}{g_{*s}} x^2 K_2(x)$ (*K_n(x*): modified Bessel function)

 \Rightarrow Thermal average of cross section $\,\sigma$:

$$\langle \sigma v \rangle = \frac{1}{8m_{\chi}^4 T K_2^2(m_{\chi}/T)} \int_{4m_{\chi}^2}^{\infty} \mathrm{d}s \ \sigma(s - 4m_{\chi}^2) \sqrt{s} \ K_1(\sqrt{s}/T)$$

November 18, 2008

Ansatz for approximate cross sections

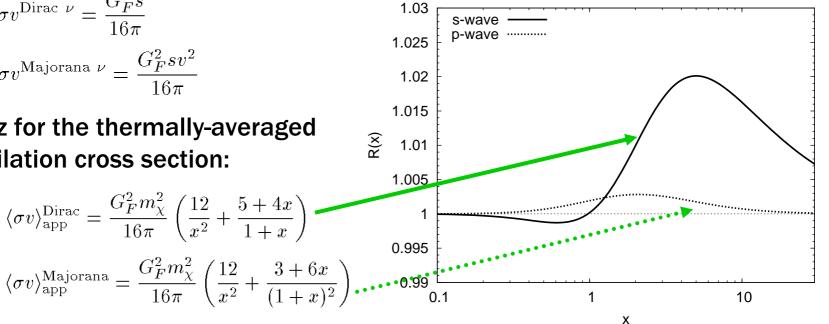
- Consider neutrinos as stable relic:
- Annihilation cross section:

$$\sigma v^{\text{Dirac }\nu} = \frac{G_F s}{16\pi}$$
$$\sigma v^{\text{Majorana }\nu} = \frac{G_F^2 s v^2}{16\pi}$$

 C^2

 Ansatz for the thermally-averaged annihilation cross section:

$$\langle \sigma v
angle_{
m app} / \langle \sigma v
angle_{
m exact MB}$$
 :



The approx. cross sections reproduce the exact results with accuracy of a few %

November 18, 2008

Approximate abundance of semi-relativistic relics

Define the freeze–out temperature by

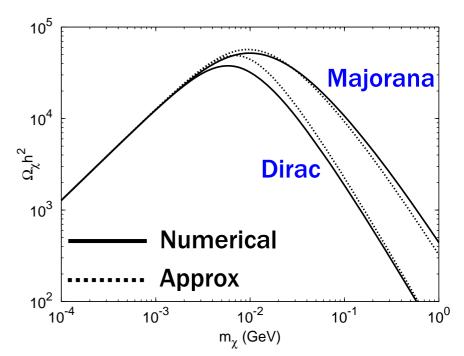
 $\Gamma(x_F) = H(x_F)$ where

$$\Gamma(x_F) = n_{\chi, eq}(x_F) \langle \sigma v \rangle(x_F)$$

(different from the standard definition of x_F)

- Assume the relic abundance does not change after decoupling
 - **Final abundance:**

 Comparison between the numerical and approx solutions



Applications of semi-relativistic relics

As DM candidates

Hypothetical semi-relativistic relics should decouple before BBN

$$\longrightarrow m_{\chi} \sim T_F > T_{\rm BBN} \simeq {\rm MeV} \Longrightarrow \Omega_{\chi} h^2 > 10^3$$

The relic abundance is too high!

As source of large entropy production [Steinhardt, Turner (1983)]

Out-of-equilibrium decay of relic particles produces entropy

Ratio of the final to initial entropy: $\frac{S_f}{S_i} = g_*^{1/4} \frac{m_{\chi} Y_{\chi,i} \tau_{\chi}^{1/2}}{M_{\rm Tr}^{1/2}} \propto \Omega_{\chi} h^2$

Semi-relativistic relics can produce significant entropy!

Example: sterile neutrino

- \bullet Consider a sterile neutrino mixed with an active neutrino (mixing angle: θ)
- Decay rate of the sterile neutrino:
- $\Gamma_{\chi} = \frac{G_F^2 m_{\chi}^5}{192\pi^3} \sin^2 \theta, \quad \frac{G_F m_{\chi}^3}{16\pi} \sin^2 \theta$ (for small m_{χ}) (for large m_{χ}) should be large enough not to spoil BBN 10⁻¹⁰ • By introducing a new heavy particle, U, $\stackrel{\xi}{=}_{10^{-11}}$ large pair annihilation can be induced: $\sigma v = \frac{sv^2}{12\pi} \frac{g_{\chi}^2 g_f^2}{M_U^4} \qquad \chi \qquad U \qquad f^{10^{-12}}_{\eta_{\chi}}$ • $x_F \sim 3$ possible χ $\int_{f}^{f} \frac{10^{-12}}{10^{-13}}$

• Entropy production S_f/S_i

sterile neutrinos

by the decay of semi-relativistic

November 18, 2008

- Using the DM relic density we can probe very early universe at around $T \sim m_{\chi}/20 \sim O(10) \text{ GeV}$ (well before BBN $T_{\text{BBN}} \sim O(1) \text{ MeV}$)
- $\Omega_{\chi,\text{thermal}}h^2 = \Omega_{\text{DM}}h^2$ Lower bound on the reheat temperature: $T_R > m_{\chi}/23$
- ${\scriptstyle \bullet}$ The sensitivity of $\,\Omega_{\chi,{\rm thermal}} h^2\,$ on $H(T_F)$ is weak

- We find an approximate analytic formula for the abundance of semi-relativistic relics
- Semi-relativistic relics are useful for producing a large amount of entropy

2. Standard calculation of the WIMP relic abundance

[Scherrer, Turner, PRD33(1986); Griest, Seckel, PRD43(1991); ...]

Conventional assumptions for WIMPs as DM particle:

- $\chi=ar{\chi}$, single production of χ is forbidden
- WIMP abundance n_{χ} is determined by the Boltzmann eq.:

$$\frac{\mathrm{d}n_{\chi}}{\mathrm{d}t} + 3Hn_{\chi} = -\langle \sigma v \rangle (n_{\chi}^2 - n_{\chi,\mathrm{eq}}^2)$$

 $H = \dot{R}/R$: Hubble expansion parameter

 $\langle \sigma v \rangle$: thermal average of the annihilation cross section $\sigma(\chi\chi \to \text{SM particles})$ times relative velocity \mathcal{U}

$$n_{\chi,eq}: \text{ equilibrium number density}$$

• Introduce $Y_{\chi(,eq)} = \frac{n_{\chi(,eq)}}{s}, x = \frac{m_{\chi}}{T}$

$$\implies \frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = -\frac{\langle \sigma v \rangle s}{Hx} (Y_{\chi}^2 - Y_{\chi,eq}^2)$$

November 18, 2008

3. Low-temperature scenario

[c.f. Giudice,Kolb,Riotto(2001), Gelmini,Gondolo(2006)]

• T_R : Reheat temperature

The initial abundance is assumed to be negligible: $Y_{\chi}(x_0) = 0$, $x_0 = \frac{m_{\chi}}{T_R}$

• Zeroth order approximation:

 $T_R < T_F \implies \chi$ annihilation is negligible: $\frac{dY_0}{dx} = 0.028 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\rm Pl} e^{-2x} x \left(a + \frac{6b}{x}\right)$ The solution is proportional to the cross section:

At late times,

$$Y_0(x \gg x_0) \simeq 0.014 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\rm Pl} e^{-2x_0} x_0 \left(a + \frac{6b}{x_0}\right)$$

This solution should be smoothly connected to the standard result

November 18, 2008

First order approximation

- Add a correction term describing annihilation to Y_0 : $Y_1 = Y_0 + \delta ~(\delta < 0)$
- As long as $|\delta| \ll Y_0\;$, the evolution equation for $\delta\;$ is

$$\frac{d\delta}{dx} = -1.3 \sqrt{g_*} m_\chi M_{\rm PL} \left(a + \frac{6b}{x}\right) \frac{Y_0(x)^2}{x^2}$$

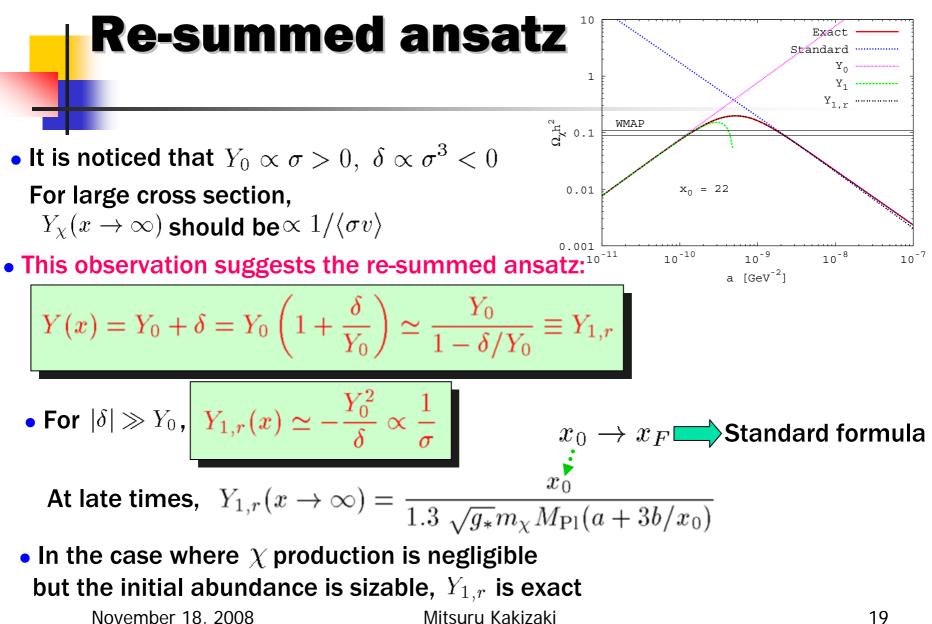
lacksim The solution is proportional to $\,\sigma^3$

At late times,

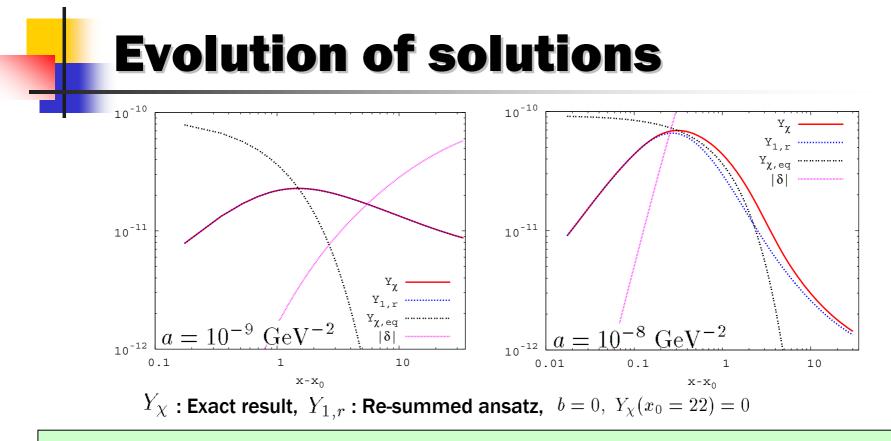
$$\delta(x \gg x_0) \simeq -2.5 \times 10^{-4} g_{\chi}^4 g_*^{-5/2} m^3 M_{\rm Pl}^3 e^{-4x_0} x_0 \left(a + \frac{3b}{x_0}\right) \left(a + \frac{6b}{x_0}\right)^2$$

• $|\delta|$ soon dominates over Y_0 for not very small cross section

 $\longrightarrow Y_1$ fails to track the exact solution

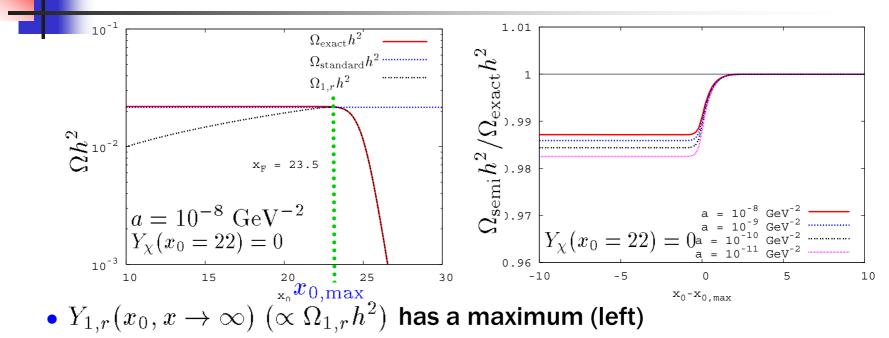


19



- The re-summed ansatz $Y_{1,r}$ describes the full temperature dependence of the abundance when equilibrium is not reached
- \bullet For larger cross section the deviation becomes sizable for $x-x_0\sim 1$, but the deviation becomes smaller for $x\gg x_0$

Semi-analytic solution



• New semi-analytic solution can be constructed: $\Omega_{semi}h^2$ (right)

For $x_0 > x_{0,\max}$, use $Y_{1,r}(x_0)$; for $x_0 < x_{0,\max}$, use $Y_{1,r}(x_{0,\max})$

The semi-analytic solution $\Omega_{\rm semi}h^2$ reproduces the correct final relic density $\Omega_{\rm exact}h^2$ to an accuracy of a few percent

Hot relics

• Hot relics (decouple for $x_F < 3$):

 $Y_{\chi,\mathrm{eq}}(x)$ almost constant

Final abundance is insensitive to the freeze out temperature:

$$Y_{\chi,\infty} = Y_{\chi,eq}(x_F) = \frac{45}{2\pi^4} \frac{g_{\chi}}{g_{*s}(x_F)}$$