

Study of the Tail Catcher Muon Tracker (TCMT) Scintillator Strips and Leakage with Simulated Coil

Rick Salcido Northern Illinois University For CALICE Collaboration

LCWS08 Nov 17, 2008 UIC, Chicago

Introduction

• The CALICE Tail-Catcher Muon-Tracker

- Goals:
 - Prototype ILC muon detector using Silicon Photo Multipliers (SiPMs)
 - Correct for leakage due to thin calorimeters
- Test Beam needed to:
 - Study end of hadronic showers & validate simulations available
 - Understand & address impact of coil
 - Understand TCMT in Particle Flow Algorithm (PFA) framework
 - Achieve good muon signature

• CALICE Detector Design and Test Beam

- Analysis
 - Crosstalk between Scintillator strips
 - Attenuation of Scintillator Strips
 - Effect of "Coil" and Tail Catcher on Energy Resolution

CALICE @ CERN Test Beam

CALICE Configuration, Oct. 2006

AHCAL:

TCMT Cassette and Strips

Calibration of Strips

TCMT Strip Crosstalk

- Trigger Requirements
 - 6 of 8 parallel strips have hits (hit = >0.5 mips)
 - No double muons
 - No pion showers
 - For Crosstalk histograms, central strip has > 0.8 mips
- Profile Plots
 - When muon track found, profile plots filled to show the energy deposited in neighboring strips during the same event
 - Total plots created by combining data for all strips
 - Slope of profile plots taken to measure correlation
- Find slope of 'total' plots (data from all strips at once)
 - It should be noted that there was no delta-ray subtraction

Crosstalk Results

- Minus 1 means adjacent strip to the left was compared
- Plus 1 means adjacent strip to the right was compared
- Mean slope $\sim 5\%$

TCMT Strip Attenuation

- Strips are divided into 20 'regions'
- Used adjacent cassette as trigger
 - Strips in adjacent cassette are perpendicular and coincide with each region on strip being studied
- Applied proper cuts (no doubles, no pions), similar to Crosstalk Analysis
- Gaussian fits applied and MPV used
- Plot MIP energy as a function of region

Attenuation: MIP value vs Region

Analog Energy Response -20 GeV pion run

Using the -20 GeV pion run, the intra-component weights are found using the anti-correlation plots: ECAL vs AHCAL (not shown) and ECAL + HCAL vs TCMT (upper left)

Energy Reconstruction

- Energy Reconstruction using analog readout
 - (a) for pion beams with different energies 10,15,20 GeV
 - (b) comparison between test beam and Monte Carlo (red) 10,20 GeV

TCMT data is combined into ECAL+AHCAL data using weights determined from the -20 GeV pion run

After Additional MIP Track Cuts

ECAL + AHCAL

ECAL + AHCAL + Full TCMT

14

Allocation of TCMT Layers

N layers added to ECAL+HCAL (two layers in this example)

Layers of TCMT added to calorimet er	End of simulated coil/ first layer of tailcatcher	TCMT layers used behind coil
0	10	7
1	10	7
2	11	6
3	11	6
4	11	6
5	11	6
6	12	5
7	12	5
8	12	5
9	12	5
10	13	4
11	14	3
12	15	2
13	16	1

Note: Weight of first layer after gap is adjusted

-20 GeV pion

RED: ECAL + HCAL + n TCMT Layers BLUE: ECAL + HCAL + n TCMT Layers + 1.5λ coil + remaining layers of TCMT¹⁶

Single Particle Resolution

17

Single Particle Resolution (cont)

Summary

- Attenuation of response over a 1m long strip was found to be approximately 10-15%
- Strip Crosstalk approximately 5%
- Adding remaining TCMT layers after a simulated coil of 1.5λ improves energy resolution and contains leakage
- For a calorimeter depth of 5.5 λ , the TCMT improves energy resolution by 2.2%, a relative improvement of 11% for the -20 GeV Pion run
- FUTURE PLANS:
 - Analyze 2007 CERN Test Beam Data
 - Compare with Monte Carlo models