Particle Identification in 4th

John Hauptman LCWS08, 15-20 November 2008 University of Illinois, Chicago

CERN H4 test beam:

- time history all S & C DREAM channels
- several crystals designed for dual readout
- BGO array as EM dualreadout
- "leakage" counters
- new neutron content measurements

This talk: particle ID

Our goal is identification of every parton with high precision and high purity.

The 4th detector is designed with particle identification (pID) in mind from the beginning. The capability to make physics measurements from an ensemble of high purity depends on the efficiency of securing that ensemble, which in turn is often the product of several small efficiencies. In this physics sense, high efficiency is equivalent to high luminosity.

Consider the high-precision high-luminosity B factories: pID efficiency is luminosity, too.

Dual-readout calorimeters (CERN beam tests)

BG(

pion, e-

beams

Hadronic energy resolution (fibers)

Dual-readout in BGO: scintillation and Cerenkov lights separated (Will answer K. Hara's question.)

	Physical measurement	Partons/particles discriminated	Subsystems used	
1.	$\Sigma_i C_i \ vs. \ \Sigma_i S_i$	$e^{\pm} vs. \pi^{\pm} vs. \mu^{\pm}$	dual-readout fiber (S and C) calorimeter	-Beam test data
2.	$\chi^{2} \sim \frac{1}{n} \sum_{i}^{n} [C_{i} - S_{i}]^{2} / [k(C_{i} + S_{i})] \\ (k \sim 0.10)$	EM <i>vs.</i> non-EM <i>vs.</i> "hadronic"	dual-readout fiber and crystal calorimeters	-Beam test data
3.	$f_n \sim E_n / E_{\text{shower}} \text{ (slow } n\text{'s)}$	"hadronic" <i>vs.</i> EM or "muonic"	scintilating fibers $S_{pe}(t)$ \leftarrow long-time history	-Beam test data
4.	(S-C) vs. (S+C)	$\mu vs. \pi vs. e$	dual-readout fiber (S and C) calorimeter	-Beam test data
5.	Time-history of S fibers	EM <i>vs.</i> non-EM <i>vs.</i> "hadronic"	dual readout S fibers	-Beam test data
6.	dN/dx cluster counting	$e - \mu - \pi - K - p$ (few GeV)	CluCou tracking <	Bench test data
7.	EM calor $+$ tracking	$e-\gamma$	CluCou tracking + dual-readout calor's	
8.	$p_{\text{tracking}} \approx E_{\text{dual-readout}} + p_{\text{muon}}$	$\mu~vs.$ punch-through tracks	CluCou, calor, muon	
9.	$\tau^{\pm} \to \rho^{\pm} \nu \to \pi^{\pm} \gamma \gamma$	$\tau vs.$ hadronic debris	BGO dual-readout CluCou, calor.	
10.	sub-ns time-of-flight	massive SUSY object	Čerenkov pulses in BGQ and fiber calorimeter	-Beam test data
11.	$W, Z \to jj$ mass	W, Z vs. QCD jj	CluCou, jet finding, dual-readout calor's	ILCroot

Particle ID in 4th

1

ID discrimination	measurement	item
e - pi - mu	S vs. C	#1 (measured - beam test data)
EM vs. hadronic	channel-to-channel S-C fluctuations	#2 (measured - beam test data)
<i>"neutronic"</i> (hadronic vs. non-hadronic)	fn	#3 (measured - beam test data)
mu vs. e,pi	(S-C) vs. (S+C)	#4 (measured - beam test data)
n & e vs. pi	$S_{pe}(t)$	#5 (measured - beam test data)
e-pi-K-p (few GeV)	$dN_{clusters}/dx$	#6 <i>(bench measurements data)</i>

ID discrimination	measurement	item
e vs. gamma	Tracking, BGO	#7 (ILCroot)
mu vs. punch- through hadrons	$P_{mu} + E_{dual} + P_{tracking}$	#8 (ILCroot)
tau> rho nu	BGO + fiber dual readout	#9 (ILCroot)
Massive SUSY, etc.	Cerenkov light timing (BGO+fibers)	#10 (ToF from beam test data)
W> jj	ILCroot, Tracking, dual-readout	#11 (achieved with ILCroot)

Dual-readout DREAM: Structure

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
 - Hexagonal towers (19), each read out by 2 PMTs

SCINTILLATOR

Res 01

Next - 16502

Aean = 370.2

FIME - 25.14

Chi2 / ndf = #94.2 / 258

Constant = 306.1 =- 2.767

lean = 377.6 + 0.1723

Signa + 22,71 + 0.1154

54% VE

450

400

350

500

550

ADC 01 raw amplitude spectrum

300

250

200

150

100

50

250

300

2.5 mm⊣

1

80 GAVE-(7) DUARTZ

ADC 13 raw emplitude spectrum

1. Basic dual-readout plot of Scintillation vs. Cerenkov

2. Chi-squared of S-C fluctuations among the channels of a shower:

$$\chi^2_{C-S} = \Sigma \left(\frac{S_k - C_k}{\sigma_k}\right)^2 \approx \Sigma_k \frac{(S_k - C_k)^2}{0.1(S_k + C_k)^2}$$

We also *calculate* the same things, so we know what we are doing.

4. Dual-readout offers a unique ID for isolated muons: this is 20 GeV, better at higher energies.

Muons and Pions (20 GeV)

5. Time-history differs for EM and hadronic objects

Distribution of time width of pulses at 1/5maximum for electrons and pions at 80 GeV in SPACAL

6. *dE/dx by cluster-finding: results in better particle ID since Landau fluctuations are absent: we expect ~3% resolution*

TPC with ~6% *dE/dx* resolution: we expect ~3% with clustercounting

This TPC built by Dave Nygren, LBL, in 1970's, analyzed by Gerry Lynch.

10. Time-of-flight of Cerenkov light in DREAM fibers

 e^- at 50 GeV fiber Cerenkov light $\sigma_t \approx 0.30$ ns Usable for EM decays of massive long-lived objects (SUSY, etc.)

Summary:

4th is rich in particle ID measurements

None of these (except W-->jj) have yet been incorporated into ILCroot for physics analyses, but they will be.

- Leptons: e, mu, tau
- *neutrino* (by subtraction)
- Quarks: uds and t (not cb yet)
- Bosons: W, Z and gamma

Extras

Test beam setup

(July-Aug '08)

