A digital ECAL based on MAPS First Sensor Results and Physics Expectations

On behalf of the CALICE-UK MAPS group

J. Ballin, P. Dauncey, **A.-M. Magna**n, M. Noy¹ Y. Mikami, O. Miller, V. Rajović, N. Watson, J. Wilson² J. Crooks, M. Stanitzki, K. Stefanov, R. Turchetta, M. Tyndel, G. Villani³

¹ Imperial College London

²University of Birmingham

³Rutherford Appleton Laboratory

LCWS08, November 16th-20th, Chicago

A.-M. Magnan A digital ECAL based on MAPS

LCWS08, Nov 17th, Chicago 1 / 21

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

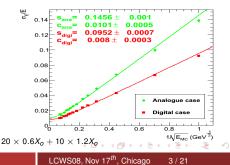
 $\Xi \rightarrow$

Introduction

- Sensor development
 - Sensor design
 - Sensor testing
- Oharge sharing measurements
 - Simulation tool
 - Laser test results

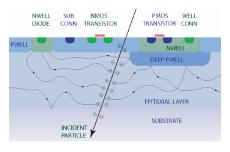
Physics expectations

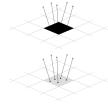
- From ideal to real conditions: impact on the energy resolution
- Resolution vs Energy

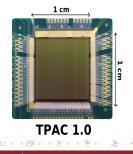


 $\Xi \rightarrow$

Digital vs Analogue: motivations

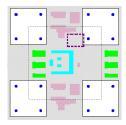

	Analogue	Digital
Measure	$E_{deposited} \propto N_{Charged \ particles} \propto E_{incident}$	$N_{Charged \ particles} \propto E_{incident}$
Fluctuations	statistical, angle of incidence,	statistical
	velocity and Landau spread	
Ideal resolution	$\simeq \frac{0.15}{\sqrt{E}}$ for ILC-like ECAL	$\simeq rac{0.10}{\sqrt{E}}$ for ILC-like ECAL
Realistic effects	noise, dead areas	Charge diffusion, noise, dead ar-
		eas, counting particle
Impact	Expected small	under study/never measured

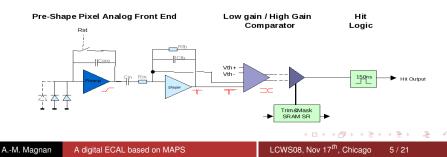

- Can we measure the number of charged particles directly?
- Can we get anywhere near the ideal resolution for the digital case?



A digital ECAL based on MAPS

- EM shower density $\simeq 100 \text{ mm}^{-2}$ in core \Rightarrow need pixels $\simeq 50 \mu \text{m}$ with binary readout = hit/no hit
- Very high granularity should help with PFA too
- Real ECAL: $\simeq 10^{12}$ pixels \Rightarrow need readout integrated into pixel
- Implement as CMOS MAPS sensor, including deep p-well INMAPS process to shield PMOS circuit transistors and increase charge collection efficiency.
- First version: TPAC 1.0 (Tera Pixel Active Calorimeter)

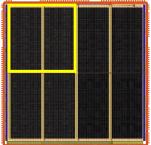


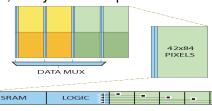

LCWS08, Nov 17th, Chicago 4 / 21

Sensor design Sensor testing

TPAC 1.0 : pixel design

- 50 × 50μm² pixel, with two variants: "preshapers" and "presamplers". Preshapers perform better and are described here.
- 0.18 μm CMOS process with INMAPS deep p-well implant
- Every pixel has 4 diodes, charge preamplifier and shaper, mask and 4-bit pedestal trim, asynchronous comparator and monostable to give hit/no hit response
- Pixel hits stored with 13-bit timestamp on-sensor until end of bunch train.





Sensor design Sensor testing

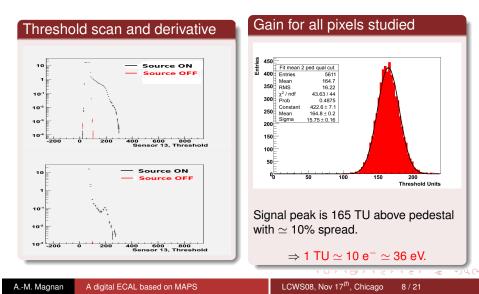
TPAC 1.0 : $1 \times 1 \text{ cm}^2$ array

- 168 × 168 pixels = 28k total.
- Two major pixel variants, each in two capacitor combinations. One quadrant performs better and is described here.
- Memory needed for data storage : 11% dead area in 5-pixels wide columns, every 42 active pixels.

42 PIXELS

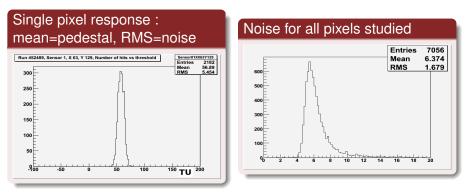
★ Ξ → ★ Ξ → ...

Sensor design Sensor testing


General method

- Binary readout \Rightarrow threshold scan, in "Threshold Unit" (TU)
- Measure pedestal and noise
- Signal:
 - Measure real physical deposit, with ⁵⁵Fe source: γ at 5.9 keV, depositing all energy \simeq 1620 electrons within 1 μ m³ of silicon \Rightarrow Absolute Calibration
 - Characterise gain uniformity : relative calibration with laser, single pixel enabled, scan of the whole array.
 - Measure charge spread with laser : localised deposit, scan of 3 × 3 array ⇒ Comparison with simulation predictions
 - Measure tracking efficiency and behaviour in showers : beam test
- Noise-only runs systematically for comparison

イロト 不得 トイヨト イヨト 三連


Sensor design Sensor testing

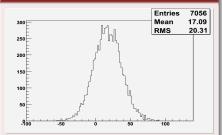
Absolute calibration with ⁵⁵Fe source

Sensor design Sensor testing

Noise measurement

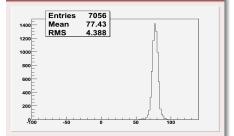
- Noise is about 6 TU \simeq 60 e⁻ \simeq 220 eV.
- Minimum noise is 4 TU \simeq 40 e⁻ \simeq 140 eV.
- No correlation with position on sensor.

< < >> < </>


(< Ξ) < Ξ)</p>

3

Sensor design Sensor testing


Pedestal measurement

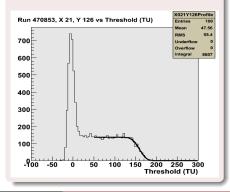
Pedestal for all pixels studied without trimming

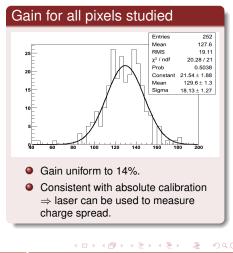
 \Rightarrow pedestal spread \simeq 4 times single pixel noise

Pedestal for all pixels studied with trimming

 \Rightarrow 4 trim bits gives pedestal spread \simeq single pixel noise: more trim bits would be better.

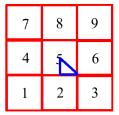
・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト


3


Sensor design Sensor testing

Relative calibration with Laser

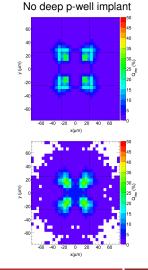
Single pixel gain with laser


Si transparent to 1064 nm light: illuminate from back side, focus on epitaxial layer. Spot size $\simeq 2\mu$ m.

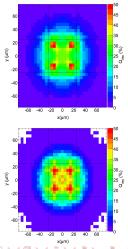
Charge diffusion measurement and simulation

- Charge diffuses to neighbouring pixels:
 - Reduces signal in "hit" pixel
 - Causes hits in neighbouring pixels
 - Need to make sure this is correctly modelled
- Simulation using Sentaurus package
 - Eull 3D finite element model
 - 3×3 pixel array = $150 \times 150 \mu m^2$ area
 - Thickness of silicon to 32 μ m depth; covers epitaxial layer of 12 μ m plus some of substrate
- Use laser to fire at different points within pixel
 - Scan bottom-right corner.
 - Laser spot size < 2 μ m, step size 5 μ m.
 - Assuming symmetry means these cover whole pixel surface
- Measure signal using threshold scan in centre pixel and all eight neighbours

-20

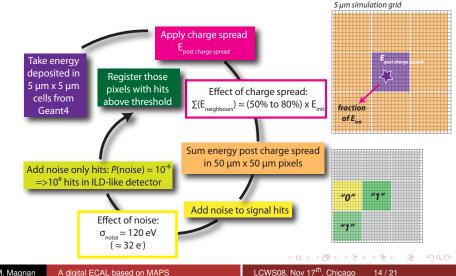

프 > + 프 >

Laser test results


Charge diffusion results Validation of the INMAPS process

Sentaurus Simulation

Real Data with Laser

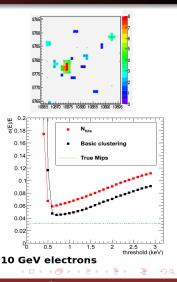


A.-M. Magnan A digital ECAL based on MAPS

LCWS08, Nov 17th, Chicago 13 / 2

From ideal to real conditions: impact on the energy resolution

The digitisation chain From ideal to real conditions

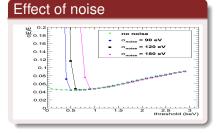


A.-M. Magnan A digital ECAL based on MAPS

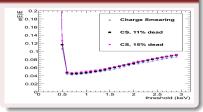
From ideal to real conditions: impact on the energy resolution Resolution vs Energy

MIP clustering

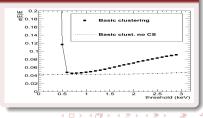
- Basic property of an EM shower
 - How dense are hits in the core?
 - GEANT4 not verified at this granularity
- Clustering helps but it is not clear where the limit is
 - Which algorithm to use depends on effects which may not be modelled well
 - Dominant effect in degrading the resolution
 - Major study of clustering algorithms still to be done
 - Essential to get experimental data on fine structure of showers to know realistic resolution

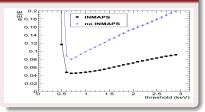


A.-M. Magnan A digital ECAL based on MAPS


LCWS08, Nov 17th, Chicago 15 / 21

From ideal to real conditions: impact on the energy resolution Resolution vs Energy

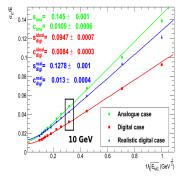

Impact of each step with 10 GeV electrons


Effect of dead area

Effect of charge diffusion

Effect of INMAPS process

LCWS08, Nov 17th, Chicago 16 / 21


From ideal to real conditions: impact on the energy resolution Resolution vs Energy

Resolution vs Energy

- Now have concrete noise values and measured charge diffusion
- Current extrapolation to "real" detector shows significant degradation of ideal DECAL resolution, but still less than ideal analogue resolution.
- 35% increase in error.
- Number of pixels hit not trivially related to number of charged tracks

Degradation arises from

- Noise hits : \simeq 5% degradation when increasing noise by factor 2.
- Dead area : \simeq 6% degradation + \simeq 2% if adding sensor edges effect.
- Charge diffusion to neighbouring pixels : after clustering, \simeq 5% degradation.
- Particles crossing pixels boundaries and sharing pixels : ~ 20% degradation.

Conclusion

First version of the sensor fully characterised:

- INMAPS process fundamental to charge collection efficiency.
- Studied pixels uniform to within $\simeq 10\%$ in gain.
- Good agreement between simulation and real data for charge spread.
- 1 MIP \simeq 1300 e⁻: on average only \simeq 35% collected by the hit pixel.
- Signal/noise for a MIP deposit on average \simeq 7.6.
- From ideal to real conditions: about 35% degradation in energy resolution, due mainly to hit confusion.
- Energy resolution after digitisation still lower than analogue case.

Critical missing measurement: behaviour in a shower.

- Need real data samples of showers at various depths in tungsten
- Compare with Geant4 simulation at 50 μ m granularity
- Check critical issues of charged particle separation and keV photon flux

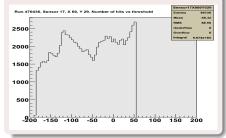
"Debugged" version, TPAC1.1 received this autumn

- All pixels uniform. Trim setting changed to 6 bits to allow finer trim adjustment.
- Will check sensor performance fully over next year including beam test at DESY.
- Still 1×1 cm²: will not be able to verify full performance of a DECAL yet...

Thank you for your attention!

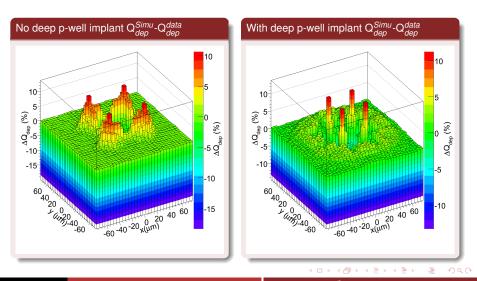
A.-M. Magnan A digital ECAL based on MAPS

LCWS08, Nov 17th, Chicago 19 / 21


코 > 코

Crosstalk measurement

Single pixel response : only one enabled


Run 470422, Sensor 17, X 60, Y 29, Number of hits vs threshol Entries 2000 15.83 1800 Overflow 1600 Integral 5183 1400 1200 1000 800 600 400 200 A COLORADO DE COLORADO 0

Single pixel response : all enabled

- Effect discovered after Dec 2007 beam test: data unusable.
- Probably due to shared power mesh for comparators and monostables: if more than 100 pixels fire comparators at same time, power droops and fires other monostables.
- Not an major issue for normal use (once understood), but render sensor useless in beam test.

Comparison bewteen data and simulation

A.-M. Magnan A digital ECAL based on MAPS

LCWS08, Nov 17th, Chicago 21 / 21