CALICE Scintillator-ECAL Beam Test @ Fermilab

Satoru Uozumi (Kobe University, Japan)

for the CALICE collaboration

Nov-17 2008 LCWS@Chicago

CALICE beam test September Run @ Fermilab

The CALICE Beam Test has been performed since Apr `08 At Fermilab Meson Test beam facility.
The ScECAL was tested in September.

Main Objectives:

- Establish feasibility of the Scintillator-ECAL
- Combined test with Analog HCAL

The Scintillator-Strip ECAL concept

• Scintillator stirp structure to achieve fine granularity for PFA.

- Many Challenging points:
 - Strip production
 - Photon sensor (MPPC)
 - Operation of huge number of channels
 - Gain monitoring system
- First need to establish the feasibility.

→ Beam Test!

Scintillator strip (4.5 x 1 x 0.3 cm)

Past Beam Test @ DESY In March 2007

- First test module of the ScECAL has been tested at DESY using 1-6 GeV e⁺ beams.
- First attempt of a calorimeter with full MPPC readout.
- 3 types of scintillators examined.
 (Kuraray w/ WLS fiber / Kuraray w/o fiber / Extruded w/ fiber)

Past Beam Test @ DESY in March 2007

Strip-response

- Performance of the small test module is promising.
- Strip response non-uniformity of extruded scintillator gives deterioration of the performance.

Improvement of the strip response uniformity

- Light through WLS fiber ... uniform
- Light **NOT** through the fiber ... not uniform
- Shielding direct light improves the non-uniformity.
- Changing reflector (white -> mirror) also gives some effect.

The ScECAL Test Module

- Sandwich structure with scintillator-strips (3 mm) and tungsten layers (3.5 mm).
- Extruded scintillator and new generation photon sensor (MPPC) are fully adopted.
- Strips are orthogonal in alternate layers.
- 72 strips x 30 layers = 2160 channels.
- Overall size ~ 20 x 20 x 25 cm.
- Signal read by electronics same with Analog HCAL.

Beam Test in Sep 2008 @ MTBF

- Objective: Establish the feasibility of Scintillator-ECAL + Analog HCAL with various types of beams in wide energy range.
 - Energy resolution, Linearity for electrons and pions.
 - Position and angular scan.
 - π^0 reconstruction ability of the Scitillator-ECAL
 - MPPC gain monitoring system with LED.
- Beam running during Sep 3rd 29th at MT6.

The Fermilab Meson Test Beamline

Various types of beams available

- 1-32 GeV electrons
- 1-60 GeV pions
- 32 GeV muons
- 120 GeV protons
- Cerenkov counter available to discriminate electron or pion.

Very Preliminary Results

Strip Response Non-uniformity

π^0 runs (Very preliminary)

- Ability of π^0 reconstruction from 2γ is useful to improve jet energy resolution.
- Generate π^0 by putting iron on beamline and injecting 16-32 GeV π^- beam.
- Try reconstruction of the generated π^0 with Scintillator-ECAL.

Summary

- September run of the CALICE beam test is successfully done.
- We have collected various data to evaluate fundamental performance of the Scintillator-ECAL + Analog HCAL.
- First trial of the π^0 reconstruction with ScECAL is in good shape.
- Extensive Analysis is currently underway.
- We appreciate everyone who gave great help for the successful beam test!